🔍
How does a PWM demodulator convert a PWM signal back to an analog voltage or current?

1 Answer

A PWM (Pulse Width Modulation) demodulator is a circuit that converts a PWM signal back to an analog voltage or current. PWM is a widely used technique in electronics and control systems to encode information in the form of a pulse train with varying pulse widths. To convert the PWM signal back to analog, the demodulator needs to extract the original continuous analog signal from the PWM waveform.

Here's how a typical PWM demodulator works:

Sampling: The PWM demodulator samples the PWM signal at a fixed frequency. This frequency is usually much higher than the PWM frequency to ensure accurate conversion.

Pulse Width Measurement: For each sampling period, the demodulator measures the width (duration) of the PWM pulses. The pulse width represents the encoded information and corresponds to the amplitude of the original analog signal.

Low-Pass Filtering: After measuring the pulse width, the demodulator uses a low-pass filter to smooth out the PWM signal's sharp edges and reconstruct the analog signal. The low-pass filter removes the high-frequency components of the PWM signal, leaving the average voltage or current value, which represents the analog signal's magnitude.

Output: The filtered output is the converted analog voltage or current. The demodulator may further amplify or condition the signal based on the application requirements.

It's important to note that the accuracy of the demodulated analog signal depends on factors such as the PWM frequency, the sampling frequency, and the characteristics of the low-pass filter used in the demodulation process.

PWM demodulation is commonly used in various applications, including motor control, audio amplification, power electronics, and communication systems. By modulating information onto a PWM signal and then demodulating it back to analog form, engineers can efficiently transmit and process signals while minimizing losses and noise.
0 like 0 dislike

Related questions

How does a DAC convert digital signals to analog voltages or currents?
Answer : A DAC (Digital-to-Analog Converter) is an electronic device that converts digital signals, typically represented as binary numbers, into analog voltages or currents. This conversion ... DACs are often preferred for demanding applications where precise analog signal reproduction is essential....

Show More

How does a CVC convert a change in capacitance to an analog voltage output?
Answer : A CVC (Capacitance-to-Voltage Converter) is a type of electronic circuit or device that converts changes in capacitance to an analog voltage output. This conversion is commonly used in ... CVCs may incorporate additional components and techniques to improve linearity, noise immunity, and stability....

Show More

How does a dual slope ADC convert analog signals to digital using a known reference and an integrator?
Answer : A dual slope analog-to-digital converter (ADC) is a type of integrating ADC that converts analog signals to digital using a known reference and an integrator. It's called "dual slope ... digital multimeters (DMMs). However, its conversion speed is relatively slow compared to other ADC architectures....

Show More

How does an ADC convert analog signals to digital representations?
Answer : An ADC (Analog-to-Digital Converter) is an electronic device or integrated circuit used to convert analog signals into digital representations. The process involves several steps to ... on factors such as required resolution, speed, power consumption, and application-specific requirements....

Show More

How does a synchronous demodulator recover the original signal from an amplitude-modulated (AM) carrier?
Answer : A synchronous demodulator, also known as a coherent demodulator or synchronous detector, is a method used to recover the original signal from an amplitude-modulated (AM) carrier. It ... superior noise rejection, making it suitable for high-fidelity signal recovery in various communication systems....

Show More

What is a pulse-width modulation (PWM) demodulator?
Answer : A Pulse-Width Modulation (PWM) demodulator is a device or circuit that is used to recover the original analog signal from a Pulse-Width Modulated signal. PWM is a common method of ... systems, and power electronics, where PWM signals are used for efficient data transmission and control....

Show More

How does a linear VFC convert an analog voltage input into a corresponding frequency output?
Answer : A Linear Voltage-to-Frequency Converter (VFC) is an electronic device that converts an analog voltage input into a corresponding frequency output. It is a type of voltage-to-frequency ... like offset and gain adjustments, filtering, or temperature compensation to enhance accuracy and reliability....

Show More

How does an anti-aliasing filter prevent signal distortion in analog-to-digital conversion?
Answer : An anti-aliasing filter is an essential component in analog-to-digital conversion (ADC) systems to prevent signal distortion caused by aliasing. Aliasing is a phenomenon that occurs when a ... is essential, such as in audio processing, telecommunications, medical imaging, and many other fields....

Show More

How does a TIA convert current to voltage in photodetector and sensor applications?
Answer : In photodetector and sensor applications, a transimpedance amplifier (TIA) is commonly used to convert the current generated by a photodiode or sensor into a corresponding voltage signal. A ... of these factors are essential to achieve optimal performance in photodetector and sensor applications....

Show More

How does a TIA convert current to voltage in photodetector and sensor applications?
Answer : In photodetector and sensor applications, a Transimpedance Amplifier (TIA) is commonly used to convert the current generated by the photodetector or sensor into a measurable voltage output. The ... of the photodetector or sensor and the desired performance characteristics of the overall system....

Show More

How does a transconductance amplifier convert a voltage input to a current output?
Answer : A transconductance amplifier is an electronic device that converts a voltage input signal into a proportional current output. It is commonly represented by the symbol for an amplifier, followed by an ... specific biasing mode to generate a current that is directly proportional to the input voltage....

Show More

How does a delta modulation ADC convert analog signals to digital using a one-bit quantizer and a feedback loop?
Answer : Delta modulation ADC (Analog-to-Digital Converter) is a type of analog-to-digital conversion technique that uses a one-bit quantizer and a feedback loop to convert analog signals into digital ... types and are limited in their ability to handle rapidly changing or high-frequency analog signals....

Show More

How does a delta-sigma modulator convert analog signals to digital using oversampling and noise shaping?
Answer : A delta-sigma modulator is a type of analog-to-digital converter (ADC) that uses oversampling and noise shaping techniques to achieve high-resolution digital representations of ... significant advantages in achieving high-resolution conversion with good noise performance in various applications....

Show More

How does a sigma-delta ADC convert analog signals to digital using oversampling and noise shaping?
Answer : A Sigma-Delta (ΣΔ) ADC is a type of analog-to-digital converter that employs oversampling and noise shaping techniques to achieve high resolution and improved signal-to-noise ratio ( ... ADCs are well-suited for applications requiring high-resolution and high-precision analog-to-digital conversion....

Show More

How does a voltage-to-frequency converter change an analog voltage input into a corresponding frequency output?
Answer : A voltage-to-frequency converter (VFC) is an electronic device that converts an analog voltage input into a corresponding frequency output. This type of circuit is commonly used in ... control the sensitivity and operating range of the VFC according to your specific application requirements....

Show More

How does a frequency-to-voltage converter transform a frequency input into an analog voltage output?
Answer : A frequency-to-voltage converter (FVC) is an electronic circuit that converts a frequency input signal into a proportional analog voltage output. This type of converter is commonly ... accuracy for demanding applications in industries like process control, instrumentation, or communication systems....

Show More

How does a PWM controller regulate the duty cycle of a PWM signal?
Answer : A PWM (Pulse Width Modulation) controller regulates the duty cycle of a PWM signal by adjusting the time during which the signal is in the "on" state (high) compared to the time it ... or voltage regulators, adjusting the duty cycle can control the brightness or output voltage level, respectively....

Show More

How does a photodiode convert light into an electrical signal?
Answer : A photodiode is a semiconductor device that converts light energy into an electrical signal. It operates based on the principle of the photoelectric effect. When light of appropriate ... valuable component in various applications, such as light detection, optical communication, and sensing....

Show More

How does a piezoelectric transducer convert mechanical stress into an electrical signal?
Answer : A piezoelectric transducer is a device that can convert mechanical stress or pressure into an electrical signal. It is based on the piezoelectric effect, which is a property exhibited by ... due to their ability to efficiently convert mechanical energy into electrical signals and vice versa....

Show More

How does a switched capacitor integrator perform analog integration without using continuous resistors or inductors?
Answer : A switched capacitor integrator is an electronic circuit that performs analog integration without using continuous resistors or inductors. Instead, it utilizes a series of switches, capacitors, and ... of sampling noise, which can be mitigated through clever design techniques and oversampling....

Show More

How does a switched-capacitor integrator perform analog integration without using continuous resistors or inductors?
Answer : A switched-capacitor integrator is an electronic circuit that performs analog integration without using continuous resistors or inductors. Instead, it relies on the charging and discharging of capacitors ... , such as signal filtering, analog-to-digital conversion, and various control systems....

Show More

How does a switched capacitor integrator perform analog integration without using resistors or inductors?
Answer : A switched-capacitor integrator is an electronic circuit that performs analog integration without using resistors or inductors. Instead, it relies on the principle of charge transfer between ... for analog integration without relying on traditional passive components like resistors or inductors....

Show More

How does an RFID system use radio waves to identify and track objects or individuals?
Answer : An RFID (Radio Frequency Identification) system uses radio waves to identify and track objects or individuals by utilizing a combination of tags, readers, and a backend database. Here's a step-by- ... The system is widely adopted due to its accuracy, speed, and ability to automate various processes....

Show More

How does an RFC block radio-frequency signals while allowing DC or low-frequency signals to pass?
Answer : An RFC (Radio-Frequency Choke) is an electronic component designed to block radio-frequency signals while allowing DC (Direct Current) or low-frequency signals to pass through. It is ... and interference from radio frequencies while allowing desired DC or low-frequency signals to flow unimpeded....

Show More

How does a level shifter convert signal voltage levels between different logic families?
Answer : A level shifter is a circuit used to convert signal voltage levels between different logic families. In digital systems, different logic families often use different voltage levels to ... and specifications of the logic families involved to ensure proper compatibility and signal integrity....

Show More

How is a PWM signal used for motor control and dimming applications?
Answer : A PWM (Pulse Width Modulation) signal is widely used in motor control and dimming applications due to its ability to efficiently control the speed of motors or the intensity of light sources. PWM for ... for PWM signals in such applications range from a few hundred Hz to several kHz or more....

Show More

How does an OTA provide a voltage output proportional to an applied current input?
Answer : An OTA (Operational Transconductance Amplifier) is a specialized type of operational amplifier that provides an output voltage that is proportional to the input current applied to it. It is ... building blocks in many analog circuits, enabling a wide range of applications in electronics....

Show More

How does an OTA provide a voltage output proportional to an applied current input?
Answer : An OTA (Operational Transconductance Amplifier) is a versatile electronic device that can be used in various analog applications. It is essentially a voltage-controlled current source, ... voltage conversion, voltage-controlled current sources, and more complex analog signal processing tasks....

Show More

What is a pulse-width modulation (PWM) signal?
Answer : Pulse-width modulation (PWM) is a technique used to encode information in the form of a digital signal by varying the width of the pulses in a periodic waveform. It is commonly employed ... and heat generation, making them a popular choice for many applications where precise control is needed....

Show More

How does a switched capacitor ADC sample and convert analog signals using capacitor charging and discharging?
Answer : A switched capacitor analog-to-digital converter (ADC) is a type of ADC that uses the principles of capacitor charging and discharging to sample and convert analog signals into digital representations ... compared to other ADC types like the successive approximation ADC or the delta-sigma ADC....

Show More

How does a tri-state buffer enable or disable the output signal in digital circuits?
Answer : A tri-state buffer (also known as a three-state buffer) is a type of digital logic gate that allows a signal to be enabled, disabled, or in a high-impedance state (disconnected). It ... situations where multiple devices need to share a common bus or output line without interfering with each other....

Show More

How does a clipper circuit limit the amplitude of a signal above or below a certain threshold?
Answer : A clipper circuit, also known as a limiter circuit, is an electronic circuit that limits the amplitude of a signal by cutting off or "clipping" the voltage above or below a ... levels can be achieved, allowing flexibility in adjusting the amplitude limitation according to specific requirements....

Show More

How does a sampling gate capture and hold an analog input voltage for a specific period?
Answer : A sampling gate, also known as a sample-and-hold circuit (S&H), is an electronic circuit used to capture and hold an analog input voltage for a specific period of time. The purpose of ... of analog signals are required. They play a critical role in signal processing and data acquisition systems....

Show More

How does a sample-and-hold circuit capture and hold an analog input voltage for a specific period?
Answer : A sample-and-hold (S&H) circuit is an essential component in analog-to-digital conversion and various other applications where it's necessary to capture and hold an analog input voltage for a specific ... remains the same: to acquire and retain an analog voltage for a specific period of time....

Show More

How does a TAC convert time intervals to corresponding voltage amplitudes in time-based measurements?
Answer : In time-based measurements, a Time-to-Amplitude Converter (TAC) is a device used to convert time intervals into corresponding voltage amplitudes. It is commonly used in various ... way to convert time intervals into corresponding voltage amplitudes for further analysis and data processing....

Show More

How does a TAC convert time intervals to corresponding voltage amplitudes in time-based measurements?
Answer : A Time-to-Amplitude Converter (TAC) is an electronic circuit used in time-based measurements and applications. Its primary function is to convert time intervals into corresponding ... capability, and compensation for temperature and other environmental factors to enhance accuracy and performance....

Show More

How does a TAC convert time intervals to corresponding voltage amplitudes in time-based measurements?
Answer : In time-based measurements, a TAC (Time-to-Amplitude Converter) is a type of electronic circuit that converts time intervals into corresponding voltage amplitudes. It is commonly used in various ... design and implementation of a TAC can vary depending on the specific application and requirements....

Show More

How does a TAC convert time intervals to corresponding voltage amplitudes in time-based measurements?
Answer : A TAC (Time-to-Amplitude Converter) is an electronic circuit commonly used in time-based measurements, especially in applications such as time-of-flight measurements, time- ... conversion techniques, enabling precise time-based measurements in various scientific and engineering applications....

Show More

How does a voltage-to-frequency converter convert a voltage level to a corresponding frequency?
Answer : A voltage-to-frequency converter (VFC) is an electronic circuit that converts an analog voltage input into a corresponding frequency output. This type of converter is commonly used in ... control systems, where they offer advantages in terms of noise immunity and digital interfacing capabilities....

Show More

How does a passive RFID tag receive power from the reader and transmit data back?
Answer : Passive RFID (Radio Frequency Identification) tags receive power from the reader and transmit data back through a process known as electromagnetic induction. Here's a simplified explanation of how ... data transmission capabilities compared to active RFID tags, which have their own power source....

Show More

What is an analog-to-digital converter (ADC)?
Answer : An analog-to-digital converter (ADC) is an electronic device or a subsystem that converts continuous analog signals into discrete digital representations. In simpler terms, it takes real-world ... devices, and control systems, where analog signals need to be processed or transmitted digitally....

Show More

How does a PLL synchronize the phase and frequency of an output signal to a reference signal?
Answer : A Phase-Locked Loop (PLL) is a control system that synchronizes the phase and frequency of an output signal with that of a reference signal. It is widely used in various ... difference, and using feedback to continuously minimize the phase and frequency error until synchronization is achieved....

Show More

How does a peak-to-peak detector measure the amplitude of an AC signal?
Answer : A peak-to-peak detector is a simple circuit used to measure the amplitude of an AC (alternating current) signal. It provides the peak-to-peak voltage value, which is the difference between ... , such as peak detectors with op-amps or digital peak detection algorithms in signal processing systems....

Show More

How does a PLL synchronize an output signal to an input reference signal?
Answer : A Phase-Locked Loop (PLL) is a control system used to synchronize an output signal to an input reference signal. It is commonly used in electronics and communication systems for tasks such as ... changes in the reference signal's frequency or phase, ensuring a stable and accurate output signal....

Show More

How does a Schmidt trigger convert a noisy input signal into a clean digital output?
Answer : A Schmidt trigger is a type of electronic circuit that converts an analog input signal into a clean digital output signal. It is designed to eliminate noise and provide hysteresis, which ... systems to interface with analog signals and provide robust switching behavior in the presence of noise....

Show More

How does a Schmitt trigger convert a noisy signal into a clean digital signal?
Answer : A Schmitt trigger is a type of comparator circuit that converts an analog input signal, which may be noisy or fluctuating, into a clean digital output signal with well-defined logic ... analog signals into digital signals and in noise-sensitive applications to ensure reliable signal processing....

Show More

How does an NPN transistor amplify current flow from the collector to the emitter when a base current is applied?
Answer : An NPN (Negative-Positive-Negative) transistor is a type of bipolar junction transistor (BJT) that can be used as an amplification device. It consists of three layers of semiconductor ... the NPN transistor a versatile and widely used component in electronic circuits for amplification purposes....

Show More

How does a zero-crossing detector detect when an AC signal crosses the zero voltage point?
Answer : A zero-crossing detector is a simple electronic circuit designed to detect when an AC (alternating current) signal crosses the zero voltage point. The zero voltage point is the instant at which ... precise timing and control in a wide range of applications that rely on AC signal characteristics....

Show More

How does a peak detector capture and hold the highest voltage level of an input signal?
Answer : A peak detector is an electronic circuit that captures and holds the highest voltage level (peak voltage) of an input signal. It is commonly used in various applications such as ... various electronic systems where capturing and holding peak voltages is required for further processing or analysis....

Show More

How does a window comparator monitor whether an input signal falls within preset voltage levels?
Answer : A window comparator is an electronic circuit used to monitor whether an input signal falls within preset voltage levels or a specific voltage range. It is commonly used in various applications, such as ... the desired range; otherwise, it will indicate whether the input is above or below the window....

Show More
Welcome to Learn Electrical, where you can Learn Electrical and Electronics Engineering from Basics to Advanced Level by Questions, Answers and Videos.
...