🔍
How does a resonant LC tank circuit oscillate at its resonant frequency?

1 Answer

A resonant LC tank circuit oscillates at its resonant frequency due to the interplay between the inductance (L) and capacitance (C) elements within the circuit. When properly designed and excited, the tank circuit can store and exchange energy between the inductor and capacitor at the resonant frequency, resulting in sustained oscillations.

Let's dive into the process of how this happens:

Charging the Capacitor:
Initially, let's assume that the capacitor in the LC tank circuit is charged, and there is no current flowing through the inductor. The voltage across the capacitor is at its maximum, and the current through the inductor is at its minimum.

Discharging the Capacitor:
Once the capacitor is fully charged, we disconnect the power source, and the only pathway for the electric charge to flow is through the inductor. As the capacitor discharges, it starts to supply current to the inductor.

Current in the Inductor:
The inductor opposes changes in current flow, so as the current begins to flow through the inductor, the inductor starts building up a magnetic field around it. This magnetic field stores energy.

Capacitor Energy Transferred to Inductor:
As the capacitor continues to discharge, the energy stored in the capacitor's electric field is transferred to the inductor's magnetic field. The voltage across the capacitor decreases, while the current flowing through the inductor increases.

Capacitor Current Reversal:
At a specific moment, the capacitor will be fully discharged, and the current will be at its maximum through the inductor. This point is where the polarity of the voltage across the capacitor changes. The voltage across the capacitor and the current through the inductor are now in opposite directions.

Energy Exchange:
As the current in the inductor reaches its maximum, the inductor's magnetic field stores the maximum amount of energy, while the voltage across the capacitor is at its minimum. At this moment, the energy in the system is almost entirely in the form of magnetic energy in the inductor.

Magnetic Field Collapse and Capacitor Recharging:
The inductor now begins to release its stored energy back into the circuit as the magnetic field collapses. The collapsing magnetic field induces a voltage in the circuit in the same direction as the original voltage across the capacitor. This causes the capacitor to recharge, but in the opposite direction.

Repeat Cycle:
The process repeats, and the energy starts to oscillate between the inductor's magnetic field and the capacitor's electric field. As long as there is no significant energy loss in the circuit, the oscillations will continue at the resonant frequency determined by the values of the inductance and capacitance.

It's important to note that in a real-world circuit, there will be some resistance and other losses that can dampen the oscillations over time. However, in an idealized scenario with no losses, the LC tank circuit will continue to oscillate indefinitely at its resonant frequency.
0 like 0 dislike

Related questions

What is a resonant LC tank circuit?
Answer : A resonant LC tank circuit, also known as an LC resonance circuit or LC resonator, is an electrical circuit consisting of inductors (L) and capacitors (C) connected in a specific ... a specific frequency makes it a fundamental building block in various electronic devices and communication systems....

Show More

How does a Hartley oscillator generate a sinusoidal output using LC tank circuit topology?
Answer : A Hartley oscillator is a type of LC oscillator that generates a sinusoidal output waveform. It utilizes a tank circuit composed of an inductor (L) and a capacitor (C) to produce ... of the fundamental building blocks for generating RF (radio frequency) signals in electronic communication systems....

Show More

How does a parallel resonant circuit exhibit high impedance at its resonant frequency?
Answer : A parallel resonant circuit, also known as a tank circuit or a parallel LC circuit, consists of an inductor (L) and a capacitor (C) connected in parallel. At the resonant frequency of the ... , the current in the circuit is minimized, and the voltage across the components reaches its maximum value....

Show More

What is an LC circuit (tank circuit) and its use in resonant applications.
Answer : An LC circuit, also known as a tank circuit, is a type of electronic circuit composed of an inductor (L) and a capacitor (C) connected together. It is used in resonant ... electronics and are used in various applications where resonance, frequency selection, and signal manipulation are crucial....

Show More

How does a parallel resonant frequency occur when the inductive and capacitive reactances are equal in an AC circuit?
Answer : In an AC circuit, when the inductive reactance (XL) and capacitive reactance (XC) are equal, the circuit is said to be in a state of resonance. This phenomenon is known as ... . This can have practical applications in various electrical systems, such as tuning circuits and filtering applications....

Show More

Describe the behavior of a resonant tank circuit and its applications in frequency selection.
Answer : A resonant tank circuit, also known as an LC circuit, is a type of electrical circuit that exhibits resonance at a specific frequency. It consists of an inductor (L) and a ... others, making it an indispensable component in various applications where frequency selection and filtering are essential....

Show More

How does a Class E amplifier achieve high efficiency with a tuned LC circuit?
Answer : A Class E amplifier achieves high efficiency by using a tuned LC (inductor-capacitor) circuit to minimize power losses. The Class E amplifier is a type of switching amplifier ... linear amplifiers, requiring careful consideration of the components and circuit layout to achieve optimal performance....

Show More

How does an LC tank circuit work as a bandpass filter in AC circuits?
Answer : An LC tank circuit can function as a bandpass filter in AC circuits due to its resonance properties. A bandpass filter is designed to allow a certain range of frequencies to pass through ... frequency ranges need to be filtered or amplified, such as in radio receivers and communication systems....

Show More

How do you analyze a simple LC tank oscillator circuit?
Answer : Analyzing a simple LC tank oscillator circuit involves understanding its components, equations, and behavior to determine its oscillation frequency and conditions for sustained oscillation. Let's break ... to handle the sinusoidal behavior of the circuit elements and the phase shifts accurately....

Show More

How does a parallel resonant circuit behave at its resonant frequency?
Answer : A parallel resonant circuit, also known as a tank circuit, is a type of electrical circuit that consists of a combination of inductance (L) and capacitance (C) components connected ... amplification, zero phase shift, and efficient energy transfer between its inductive and capacitive components....

Show More

How does the frequency stability of an oscillator depend on the resonant components and feedback loop?
Answer : The frequency stability of an oscillator depends on the resonant components and the feedback loop design. An oscillator is a circuit that generates an output signal with a specific frequency ... and manufacturing process helps to achieve the desired level of stability for a specific application....

Show More

How does a relaxation oscillator produce a periodic waveform without using LC components?
Answer : A relaxation oscillator is an electronic circuit that generates a periodic waveform without using LC (inductor-capacitor) components. Instead, it relies on the charging and discharging of capacitors ... , and clock signal generation in simple digital circuits, where precision is not critical....

Show More

How do you calculate the resonant frequency in an LC circuit?
Answer : The resonant frequency in an LC circuit can be calculated using the formula: f = 1 / (2 * π * √(L * C)) where: f is the resonant frequency in Hertz (Hz), π is the ... lead to resonance. This resonance can lead to various interesting phenomena in the circuit, depending on the specific application....

Show More

What is the formula for calculating the resonant frequency of an LC circuit?
Answer : The resonant frequency of an LC (inductor-capacitor) circuit can be calculated using the following formula: = 1 2 f= 2π LC 1 Where: f is the resonant ... often used in radio frequency (RF) circuits, filters, and other applications where specific frequency responses are desired....

Show More

What is a parallel resonant frequency?
Answer : In the context of electrical circuits and resonance, a parallel resonant frequency (also known as anti-resonant frequency or parallel resonance frequency) is a specific frequency at ... Understanding the parallel resonant frequency is crucial for designing and analyzing these circuits effectively....

Show More

What is a resonant circuit and how does it resonate at a specific frequency?
Answer : A resonant circuit, also known as a tuned circuit or an LC circuit, is an electrical circuit that can store and exchange energy between its inductive (L) and capacitive ... designing and optimizing electronic circuits to work at specific frequencies and achieve desired performance characteristics....

Show More

How does a resonant circuit respond to specific frequencies?
Answer : A resonant circuit is an electronic circuit that has a natural frequency of oscillation. It consists of a combination of inductors and capacitors, which can store and release energy ... specific frequencies can be amplified, attenuated, or passed through the circuit with high efficiency....

Show More

Define a tank circuit and its use in generating resonant frequencies.
Answer : A tank circuit is a type of electronic circuit that consists of a combination of an inductor (coil) and a capacitor connected in parallel or in series. It is designed ... capacitance to generate and manipulate resonant frequencies for various applications in electronics and communication systems....

Show More

Describe the operation of a LC tank oscillator.
Answer : An LC tank oscillator is an electronic circuit that generates sinusoidal or oscillatory signals using a combination of an inductor (L) and a capacitor (C) connected in a feedback loop. ... inductor and capacitor's energy storage and exchange, combined with positive feedback to sustain oscillations....

Show More

How does a thermocouple cold junction compensation account for the ambient temperature at the thermocouple reference point?
Answer : Thermocouples are temperature sensors that generate a voltage proportional to the temperature difference between their measurement junction (where the temperature is being measured) and the cold ... of temperature measurements despite changes in the ambient temperature at the cold junction....

Show More

What is a parallel resonant circuit?
Answer : A parallel resonant circuit, also known as a parallel resonance circuit or tank circuit, is an electronic circuit that exhibits resonance at a specific frequency. It consists of a ... electronic devices and systems where the selective amplification or filtering of specific frequencies is required....

Show More

What is a resonant circuit?
Answer : A resonant circuit, also known as a tuned circuit or a tank circuit, is an electrical circuit that exhibits resonance at a specific frequency. Resonance occurs when the reactive ... frequencies or reject others. They are essential components in many electronic devices and communication systems....

Show More

How does a microstrip transmission line carry high-frequency signals on a printed circuit board?
Answer : A microstrip transmission line is a type of transmission line used on printed circuit boards (PCBs) to carry high-frequency signals. It consists of a conducting strip, typically made of ... frequencies. To address these issues, specialized design techniques and high-frequency PCB materials are used....

Show More

How does a pre-emphasis circuit boost higher-frequency signals before transmission to compensate for attenuation?
Answer : A pre-emphasis circuit is a signal processing technique used in various communication systems, particularly in audio and video transmission. Its purpose is to boost higher-frequency signals ... video quality, especially when dealing with analog transmission where signal degradation is a concern....

Show More

Define a tank circuit and its use in radio frequency circuits.
Answer : A tank circuit, also known as a resonant circuit or tuned circuit, is an electrical circuit consisting of an inductor (coil) and a capacitor connected in parallel or in series. ... role in frequency tuning, amplification, filtering, and modulation in various communication and electronic systems....

Show More

How does a VCF modify its frequency response based on the applied control voltage?
Answer : A Voltage-Controlled Filter (VCF) is an electronic circuit commonly found in analog synthesizers and audio equipment. It is designed to modify the frequency response of an audio signal based ... a wide range of expressive and creative sound-shaping possibilities in audio synthesis and processing....

Show More

How does a VCXO vary its output frequency based on a control voltage?
Answer : A VCXO (Voltage-Controlled Crystal Oscillator) is an electronic component that generates an output frequency that can be adjusted or varied by applying a control voltage. It is commonly used in ... with the crystal resonator, resulting in frequency pulling and a change in the output frequency....

Show More

How does a VCF adjust its frequency response based on a control voltage?
Answer : A Voltage-Controlled Filter (VCF) is an essential component in analog synthesizers and other audio devices. It allows the manipulation of the frequency response of an audio signal using a control ... used in combination to create complex timbral changes and shape the overall sound in unique ways....

Show More

Explain the concept of an inductor-capacitor (LC) resonant circuit.
Answer : An inductor-capacitor (LC) resonant circuit is a fundamental electronic circuit that exhibits resonance at a specific frequency. It consists of two main components: an inductor and a ... and are essential components in devices like radio receivers, transmitters, and wireless communication systems....

Show More

Describe the operation of an LC parallel resonant circuit.
Answer : An LC parallel resonant circuit, also known as a tank circuit, is an electronic circuit consisting of an inductor (L) and a capacitor (C) connected in parallel. This ... This makes it a fundamental component in various electronic applications requiring frequency selection and signal processing....

Show More

What is a frequency multiplier circuit?
Answer : A frequency multiplier circuit is an electronic circuit that takes an input signal with a certain frequency and generates an output signal with a higher frequency. It is used to increase ... frequency (RF) communication systems, where they help in frequency up-conversion for transmission purposes....

Show More

How does a Varactor Tuned LC Oscillator vary its frequency, and where is it employed?
Answer : A Varactor Tuned LC Oscillator is a type of electronic oscillator that uses a varactor diode to control the frequency of the oscillation. Let's break down how it works and ... of generating tunable oscillations, making them valuable components in many electronic systems requiring frequency agility....

Show More

How does a PLL with frequency division multiply the input frequency to generate higher output frequencies?
Answer : A Phase-Locked Loop (PLL) with frequency division is a common method used to generate higher output frequencies from an input frequency. The basic principle behind this process ... resulting in frequency doubling. Similarly, higher division factors can lead to higher frequency multiplication....

Show More

How does a PLL frequency synthesizer generate multiple output frequencies from a stable reference frequency?
Answer : A PLL (Phase-Locked Loop) frequency synthesizer is a circuit that generates multiple output frequencies from a stable reference frequency. It is commonly used in communication systems, RF ... due to their ability to provide stable and accurate frequency synthesis for various applications....

Show More

How does the intermediate frequency in a superheterodyne receiver facilitate signal filtering and demodulation?
Answer : In a superheterodyne receiver, the intermediate frequency (IF) plays a crucial role in facilitating signal filtering and demodulation. The superheterodyne architecture is the most widely used ... extract the desired information from the received radio signal with high selectivity and accuracy....

Show More

How does an MMIC amplifier integrate various microwave components on a single chip for high-frequency applications?
Answer : An MMIC (Monolithic Microwave Integrated Circuit) amplifier is a type of integrated circuit designed for high-frequency microwave applications. It integrates various microwave components on a single ... applications, providing a high level of integration and performance in a small form factor....

Show More

How does an RF mixer combine two input signals to produce sum and difference frequencies for frequency translation?
Answer : An RF (Radio Frequency) mixer is an essential component in many communication systems that facilitates frequency translation. It combines two input signals, typically an RF signal and a local ... to be shifted to a different frequency range for various communication and signal processing purposes....

Show More

How does a high-pass filter attenuate low-frequency signals and pass higher-frequency signals?
Answer : A high-pass filter is an electronic circuit that allows higher-frequency signals to pass through while attenuating or blocking lower-frequency signals. This is achieved by exploiting the ... basic principle of attenuating low-frequency signals and passing higher-frequency signals remains the same....

Show More

How does a Wien bridge oscillator with frequency modulation vary the output frequency with an applied modulation signal?
Answer : A Wien bridge oscillator is a type of electronic oscillator that generates sinusoidal waveforms at a specific frequency. The frequency of oscillation is determined by the values of the components ... proportional to the amplitude and frequency of the modulation signal applied to the varactor diode....

Show More

How does a DCO generate a frequency output that can be digitally programmed or adjusted?
Answer : A DCO (Digitally Controlled Oscillator) is an electronic oscillator that generates a frequency output, and its frequency can be digitally programmed or adjusted. DCOs are widely used in ... into digital circuits, and the possibility of automated frequency adjustments in real-time applications....

Show More

How does a superheterodyne receiver convert and filter radio-frequency signals to intermediate frequencies for demodulation?
Answer : A superheterodyne receiver is a common type of radio receiver that converts and filters radio-frequency (RF) signals to intermediate frequencies (IF) for further processing and ... advantage has made the superheterodyne architecture a standard choice in modern radio communication systems....

Show More

How does a VCO generate a frequency output that varies with the applied control voltage?
Answer : A VCO, or Voltage-Controlled Oscillator, is an electronic oscillator that generates an output frequency that varies with the applied control voltage. This is achieved through the use of ... directly influences the oscillator's frequency, resulting in a corresponding change in the output frequency....

Show More

How does a PLL synchronize the phase and frequency of an output signal to a reference signal?
Answer : A Phase-Locked Loop (PLL) is a control system that synchronizes the phase and frequency of an output signal with that of a reference signal. It is widely used in various ... difference, and using feedback to continuously minimize the phase and frequency error until synchronization is achieved....

Show More

How does a linear VFC convert an analog voltage input into a corresponding frequency output?
Answer : A Linear Voltage-to-Frequency Converter (VFC) is an electronic device that converts an analog voltage input into a corresponding frequency output. It is a type of voltage-to-frequency ... like offset and gain adjustments, filtering, or temperature compensation to enhance accuracy and reliability....

Show More

How does a Gilbert cell mixer perform frequency translation in RF applications?
Answer : In RF (Radio Frequency) applications, a Gilbert cell mixer is commonly used to perform frequency translation, also known as frequency mixing or heterodyning. Frequency translation is a fundamental ... of Gilbert cell mixers make them valuable components in RF front-ends and communication systems....

Show More

How does an all-pass filter change the phase of different frequency components without affecting amplitude?
Answer : An all-pass filter is a type of signal processing filter that allows all frequencies to pass through with equal gain but alters the phase response of different frequency components. The ... where precise phase manipulation is needed without affecting the overall spectral content of the signal....

Show More

How does an RFC block radio-frequency signals while allowing DC or low-frequency signals to pass?
Answer : An RFC (Radio-Frequency Choke) is an electronic component designed to block radio-frequency signals while allowing DC (Direct Current) or low-frequency signals to pass through. It is ... and interference from radio frequencies while allowing desired DC or low-frequency signals to flow unimpeded....

Show More

How does the Wien bridge frequency response depend on the feedback components?
Answer : The Wien bridge is a type of bridge circuit used to measure frequency. It consists of a series RC circuit and a parallel RC circuit, connected in a bridge configuration, with an ... . Proper component selection is crucial to achieve the desired frequency response and performance of the circuit....

Show More

How does a varactor diode change capacitance with applied voltage for frequency tuning applications?
Answer : A varactor diode, also known as a varicap diode or a voltage-variable capacitor, is a semiconductor device that can change its capacitance with the variation of an applied ... and other frequency tuning applications in communication systems, radio transmitters, and various electronic devices....

Show More

How does a chopper amplifier eliminate DC offsets and low-frequency noise in sensor applications?
Answer : A chopper amplifier is a specialized type of operational amplifier (op-amp) used in sensor applications to mitigate DC offsets and low-frequency noise. It achieves this through a ... switching process, so proper filter design and component selection are essential to achieve optimal performance....

Show More
Welcome to Learn Electrical, where you can Learn Electrical and Electronics Engineering from Basics to Advanced Level by Questions, Answers and Videos.
...