🔍
How does a DFB laser diode produce continuous-wave single-mode laser output with grating feedback?

1 Answer

A Distributed Feedback (DFB) laser diode is designed to produce continuous-wave single-mode laser output with the help of a grating feedback structure. The key components and principles involved in this process are as follows:

Active region: The heart of a laser diode is the active region, which is typically a semiconductor material (e.g., gallium arsenide). This region is responsible for the optical gain necessary for laser operation.

Waveguide structure: The active region is sandwiched between two layers of a different semiconductor material with lower refractive indices. This creates an optical waveguide, confining the light within the active region and promoting stimulated emission.

Grating structure: A Distributed Feedback laser contains a periodic grating structure within the waveguide. This grating acts as a wavelength-selective reflector, providing feedback to the laser cavity. The grating can be produced using various techniques, such as holography or electron beam lithography, to create a periodic variation in the refractive index along the waveguide.

Single-mode operation: The grating structure is designed to provide feedback only for a specific wavelength, corresponding to a single longitudinal mode of the laser. By properly designing the grating period and refractive index modulation, the laser can be forced to oscillate in a single longitudinal mode, providing a stable and narrow linewidth output.

Working principle:

Optical gain: The DFB laser diode is biased above the lasing threshold, allowing electrons and holes to recombine in the active region. This process stimulates the emission of photons, and as they pass through the active region, they trigger further stimulated emission, leading to an amplification of the light.

Grating feedback: As the light travels through the waveguide, a small fraction of it interacts with the grating structure. The grating acts as a wavelength-selective mirror that reflects only light of a specific wavelength, which corresponds to the Bragg condition of the grating. This reflected light, in turn, interacts again with the active region, reinforcing the optical gain for that specific wavelength.

Single-mode operation: The grating provides feedback only for a very narrow wavelength range, corresponding to a single longitudinal mode. This feedback mechanism selectively amplifies the light at the desired wavelength, effectively suppressing other modes. As a result, the laser emits light in a single longitudinal mode, leading to a stable, continuous-wave output with a narrow linewidth.

The combination of the active region and the grating feedback structure in the DFB laser diode enables the production of continuous-wave single-mode laser output, making it useful for various applications, such as telecommunications, spectroscopy, and sensing.
0 like 0 dislike

Related questions

What is a distributed feedback (DFB) laser diode?
Answer : A Distributed Feedback (DFB) laser diode is a type of semiconductor laser that emits coherent, narrow-bandwidth light with a well-defined wavelength. It is a key component in many ... systems, and in various sensing applications like gas sensing, environmental monitoring, and medical diagnostics....

Show More

How does a square wave generator produce a waveform with equal high and low durations?
Answer : A square wave generator produces a waveform with equal high and low durations by rapidly switching between two voltage levels - typically a high voltage (often referred to as "logic high ... techniques and components can be employed to fine-tune the waveform characteristics and improve its accuracy....

Show More

How does an astable multivibrator produce a continuous oscillating waveform?
Answer : An astable multivibrator, also known as a free-running multivibrator or simply an oscillator, is an electronic circuit that generates a continuous oscillating waveform without the need for external ... feedback and the inherent properties of the transistors and timing components in the circuit....

Show More

How does a balanced modulator combine two input signals to produce amplitude-modulated output signals?
Answer : A balanced modulator is a type of analog circuit used to produce amplitude-modulated (AM) output signals by combining two input signals. It operates based on the principle of multiplication and ... components, such as filters and amplifiers, to create a complete AM transmitter or receiver system....

Show More

How does a colpitts oscillator produce a sinusoidal output?
Answer : A Colpitts oscillator is a type of LC oscillator used to generate sinusoidal waveforms at radio and microwave frequencies. It uses a combination of inductors (L) and capacitors (C) in ... at specific frequencies, making it a fundamental building block in many RF and microwave applications....

Show More

Explain the operation of a distributed feedback laser (DFB).
Answer : A Distributed Feedback Laser (DFB) is a type of semiconductor laser diode that operates based on a unique principle of optical feedback. Unlike conventional lasers that use mirrors for optical ... apart from other types of lasers and makes them an essential component in modern optical technology....

Show More

How does a monostable multivibrator produce a single pulse of fixed width?
Answer : A monostable multivibrator, also known as a one-shot or single-shot multivibrator, is an electronic circuit that generates a single pulse of fixed width in response to an external trigger or input ... resistors and capacitors in the circuit and is independent of the duration of the trigger signal....

Show More

How does a Schmitt trigger oscillator generate a square wave output?
Answer : A Schmitt trigger oscillator is a type of relaxation oscillator that generates a square wave output. It achieves this by using a Schmitt trigger, which is a bistable circuit that ... making the Schmitt trigger oscillator a versatile and widely used circuit in various electronic applications....

Show More

How does a Schmitt trigger oscillator generate a square wave output?
Answer : A Schmitt trigger oscillator generates a square wave output by utilizing the hysteresis property of a Schmitt trigger. Let's break down the process step by step: Schmitt Trigger: A ... oscillators are commonly used in applications such as timing circuits, signal generation, and frequency synthesis....

Show More

How does a laser diode emit coherent light?
Answer : A laser diode emits coherent light through a process called "stimulated emission of radiation," which is the foundation of laser operation. To understand how this works, let's break ... in various applications, ranging from telecommunications and medical devices to laser pointers and laser printers....

Show More

How does a VCO produce a frequency that varies with an input voltage?
Answer : A VCO, or Voltage-Controlled Oscillator, is an electronic oscillator that generates an output signal with a frequency that varies in response to changes in an input voltage. VCOs are ... specified range, making it a versatile component in electronic systems that require variable-frequency signals....

Show More

What is a laser diode?
Answer : A laser diode is a semiconductor device that emits coherent light through a process called stimulated emission. It is a type of diode, which is a two-terminal electronic component, but ... to emit focused beams make them incredibly versatile and widely used in various industries and technologies....

Show More

How does a monostable multivibrator generate a single output pulse for a specific duration?
Answer : A monostable multivibrator, also known as a one-shot multivibrator, is a type of electronic circuit that generates a single output pulse of a specific duration when triggered. It is widely used in ... solely determined by the RC time constant, making it a useful tool in various timing applications....

Show More

How does a charge pump voltage doubler generate a doubled output voltage from a single DC input?
Answer : A charge pump voltage doubler is a type of voltage multiplier circuit that generates a doubled output voltage from a single DC input voltage. It is a simple and efficient way to ... size are crucial. For higher power requirements, more sophisticated voltage regulation techniques may be necessary....

Show More

How does a Schmitt trigger monostable circuit generate a single output pulse for a specific duration?
Answer : A Schmitt trigger monostable circuit, also known as a Schmitt trigger one-shot or simply a monostable multivibrator, is a type of electronic circuit that generates a single output pulse of a ... capacitor, and then returning the output to its stable low state after the timing period expires....

Show More

How does a synchronous buck converter regulate output voltage in continuous conduction mode?
Answer : A synchronous buck converter is a type of DC-DC power converter used to step down voltage levels efficiently. It operates by switching a series of transistors (usually MOSFETs) on ... This regulation process ensures that the output voltage remains stable and closely follows the reference voltage....

Show More

How does a buck-boost converter control its output voltage in continuous conduction mode?
Answer : A buck-boost converter is a type of DC-DC converter that can step up or step down an input voltage to produce a regulated output voltage. In continuous conduction mode (CCM), the inductor ... boost converters to be widely used in various applications where voltage step-up and step-down are required....

Show More

How does a PLL with frequency division multiply the input frequency to generate higher output frequencies?
Answer : A Phase-Locked Loop (PLL) with frequency division is a common method used to generate higher output frequencies from an input frequency. The basic principle behind this process ... resulting in frequency doubling. Similarly, higher division factors can lead to higher frequency multiplication....

Show More

How does a Wien bridge oscillator with frequency modulation vary the output frequency with an applied modulation signal?
Answer : A Wien bridge oscillator is a type of electronic oscillator that generates sinusoidal waveforms at a specific frequency. The frequency of oscillation is determined by the values of the components ... proportional to the amplitude and frequency of the modulation signal applied to the varactor diode....

Show More

How does a Wien bridge oscillator with amplitude control maintain a constant output amplitude over various conditions?
Answer : A Wien bridge oscillator with amplitude control can maintain a relatively constant output amplitude over various conditions by utilizing a feedback mechanism that adjusts the gain of the ... oscillator to maintain a relatively constant output amplitude over a range of operating conditions....

Show More

How does a VCO generate a frequency output that varies with the applied control voltage?
Answer : A VCO, or Voltage-Controlled Oscillator, is an electronic oscillator that generates an output frequency that varies with the applied control voltage. This is achieved through the use of ... directly influences the oscillator's frequency, resulting in a corresponding change in the output frequency....

Show More

How does a Wien bridge oscillator with gain amplify the output signal to sustain oscillations?
Answer : A Wien bridge oscillator is a type of electronic oscillator that generates sinusoidal waveforms. It uses a bridge circuit consisting of resistors and capacitors, and it operates based ... implementation of the circuit may require additional considerations to ensure good performance and stability....

Show More

How does a linear voltage regulator maintain a constant output voltage with varying input and load conditions?
Answer : A linear voltage regulator is an electronic circuit that maintains a constant output voltage despite varying input voltage and load conditions. It accomplishes this through the use of a voltage ... switching" the input voltage to maintain the desired output voltage and thereby reducing energy loss....

Show More

How does an LDO maintain a stable output voltage with low dropout voltage despite input variations?
Answer : A Low Dropout Regulator (LDO) is a type of voltage regulator used to provide a stable output voltage even when the input voltage varies. The key to its stable operation with low dropout ... its operation to compensate for changes in the input voltage and maintain the desired output voltage level....

Show More

How does a Schmitt trigger with hysteresis provide stable output transitions in noisy environments?
Answer : A Schmitt trigger with hysteresis is an electronic circuit that helps provide stable output transitions in noisy environments. It is commonly used to clean up noisy signals and convert analog signals ... carefully design the hysteresis value based on the specific needs of the system being designed....

Show More

How does a Wien bridge oscillator with amplitude stabilization maintain a consistent output amplitude over various conditions?
Answer : A Wien bridge oscillator with amplitude stabilization is designed to maintain a consistent output amplitude over various conditions by using a feedback mechanism that automatically adjusts the gain ... such as in audio frequency generators, frequency synthesizers, and some signal processing systems....

Show More

How does a frequency multiplier generate an output signal with a multiple of the input frequency?
Answer : A frequency multiplier is an electronic circuit or device that generates an output signal with a frequency that is a multiple of the input frequency. This can be achieved using various ... selection are essential to obtain a clean and accurate output signal with the desired frequency multiple....

Show More

How does a linear voltage regulator maintain a constant output voltage with varying input voltage and load conditions?
Answer : A linear voltage regulator is an electronic circuit designed to provide a stable and constant output voltage, even when there are fluctuations in the input voltage and varying load ... switching regulators, especially when dealing with high voltage differences between the input and output....

Show More

Design a single phase full-wave ac voltage controller with common cathode to supply an output power of 750W to a resistive load of 15Ω from an ac input voltage source of 220 V (RMS). ... , peak, average and RMS thyristor currents. Also determine the RMS output voltage ad input power factor.
Answer : Given: AC input voltage source (RMS): Vin = 220 V Output power: P = 750 W Load resistance: R = 15 Ω Step 1: Calculating Peak Output Voltage: Peak Output Voltage (Vp ... limitations of thyristor devices. It's recommended to perform detailed simulations and validations before building the circuit....

Show More

How does a varactor diode change capacitance with applied voltage for frequency tuning applications?
Answer : A varactor diode, also known as a varicap diode or a voltage-variable capacitor, is a semiconductor device that can change its capacitance with the variation of an applied ... and other frequency tuning applications in communication systems, radio transmitters, and various electronic devices....

Show More

How does an RF mixer combine two input signals to produce sum and difference frequencies for frequency translation?
Answer : An RF (Radio Frequency) mixer is an essential component in many communication systems that facilitates frequency translation. It combines two input signals, typically an RF signal and a local ... to be shifted to a different frequency range for various communication and signal processing purposes....

Show More

How does a clock generator produce a stable and accurate clock signal for digital circuits?
Answer : A clock generator is a crucial component in digital circuits that produces a stable and accurate clock signal, which synchronizes the operation of various components within the system. The ... operation, data integrity, and efficient communication between different parts of the digital system....

Show More

How does a microwave mixer combine two input signals to produce sum and difference frequencies?
Answer : A microwave mixer is a nonlinear electronic component that combines two input signals to produce sum and difference frequencies. It is a fundamental building block in many communication ... mixers can be tailored to specific applications, providing high performance and frequency selectivity....

Show More

How does a relaxation oscillator produce a periodic waveform without using LC components?
Answer : A relaxation oscillator is an electronic circuit that generates a periodic waveform without using LC (inductor-capacitor) components. Instead, it relies on the charging and discharging of capacitors ... , and clock signal generation in simple digital circuits, where precision is not critical....

Show More

How does a magnetron produce microwaves in microwave ovens?
Answer : A magnetron is the key component in a microwave oven that generates the microwaves used for cooking food. It's a type of vacuum tube electron oscillator that utilizes the interaction between ... fields, and resonant cavities. This process enables microwave ovens to heat and cook food rapidly....

Show More

How does a Wien bridge oscillator produce a sinusoidal waveform?
Answer : A Wien bridge oscillator is a type of electronic oscillator circuit that produces a sinusoidal waveform at its output. It was invented by Max Wien, a German physicist, in 1891. The ... This type of oscillator is commonly used in audio frequency applications and various signal generation circuits....

Show More

How does a pulse generator produce a specific pulse width and frequency?
Answer : A pulse generator is an electronic device or circuit designed to produce specific pulses with precise pulse widths and frequencies. It is commonly used in various applications, such as testing ... outlined above provide a general overview of how they achieve specific pulse widths and frequencies....

Show More

How does a ring oscillator produce an oscillating signal without an external clock?
Answer : A ring oscillator is a simple electronic circuit that generates an oscillating signal without the need for an external clock signal. It operates based on the inherent propagation delay of ... systems. For such applications, more sophisticated and stable oscillators like crystal oscillators are used....

Show More

How does a switched capacitor integrator perform analog integration without using continuous resistors or inductors?
Answer : A switched capacitor integrator is an electronic circuit that performs analog integration without using continuous resistors or inductors. Instead, it utilizes a series of switches, capacitors, and ... of sampling noise, which can be mitigated through clever design techniques and oversampling....

Show More

How does a switched-capacitor integrator perform analog integration without using continuous resistors or inductors?
Answer : A switched-capacitor integrator is an electronic circuit that performs analog integration without using continuous resistors or inductors. Instead, it relies on the charging and discharging of capacitors ... , such as signal filtering, analog-to-digital conversion, and various control systems....

Show More

How does a laser diode driver control the output of a laser diode?
Answer : A laser diode driver is a crucial component in controlling the output of a laser diode. Its primary function is to provide the necessary electrical current and voltage to the laser ... in industries like telecommunications, laser printing, laser cutting, medical devices, and scientific research....

Show More

How does a differential pair amplify the difference between two input signals while rejecting common-mode noise?
Answer : A differential pair is a fundamental building block in analog electronics and is commonly used in amplifier and signal processing circuits. It consists of two transistors (usually bipolar ... are critical, such as in operational amplifiers, instrumentation amplifiers, and communication interfaces....

Show More

How does CMRR characterize an amplifier's ability to reject common-mode noise?
Answer : CMRR (Common-Mode Rejection Ratio) is a measure used to quantify an amplifier's ability to reject common-mode noise. Common-mode noise refers to any unwanted signal that appears simultaneously ... communication systems, as it ensures a more accurate and reliable measurement of the desired signal....

Show More

How does the frequency stability of an oscillator depend on the resonant components and feedback loop?
Answer : The frequency stability of an oscillator depends on the resonant components and the feedback loop design. An oscillator is a circuit that generates an output signal with a specific frequency ... and manufacturing process helps to achieve the desired level of stability for a specific application....

Show More

How does negative feedback stabilize and improve the performance of amplifiers?
Answer : Negative feedback is a technique used in amplifiers to stabilize and improve their performance. It involves feeding back a portion of the output signal back to the input, but with the ... is widely used in audio and electronic amplifiers to achieve accurate and reliable signal amplification....

Show More

How does a delta modulation ADC convert analog signals to digital using a one-bit quantizer and a feedback loop?
Answer : Delta modulation ADC (Analog-to-Digital Converter) is a type of analog-to-digital conversion technique that uses a one-bit quantizer and a feedback loop to convert analog signals into digital ... types and are limited in their ability to handle rapidly changing or high-frequency analog signals....

Show More

How does a cross-coupled oscillator generate oscillations using feedback between two amplifier stages?
Answer : A cross-coupled oscillator is a type of electronic oscillator that generates continuous sinusoidal or periodic waveforms using the feedback between two amplifier stages. It typically consists of ... electronic devices and communication systems where a stable and precise oscillating signal is needed....

Show More

How does a Johnson counter cycle through all possible states using shift register feedback?
Answer : A Johnson counter, also known as a "twisted ring counter" or "walking ring counter," is a type of digital counter that cycles through all its possible states using feedback from a ... in applications like frequency division, LED chasing effects, or in generating unique patterns for various purposes....

Show More

How does the Wien bridge frequency response depend on the feedback components?
Answer : The Wien bridge is a type of bridge circuit used to measure frequency. It consists of a series RC circuit and a parallel RC circuit, connected in a bridge configuration, with an ... . Proper component selection is crucial to achieve the desired frequency response and performance of the circuit....

Show More

How does the Nyquist criterion determine the stability of feedback control systems?
Answer : The Nyquist criterion is a graphical tool used to analyze the stability of feedback control systems. It is based on the Nyquist plot, which is a plot of the frequency response of ... the necessary modifications to improve system stability, such as adjusting controller gains or adding compensators....

Show More
Welcome to Learn Electrical, where you can Learn Electrical and Electronics Engineering from Basics to Advanced Level by Questions, Answers and Videos.
...