🔍
Resistance and Ohms law - Resistance and Resistivity

1 Answer

Resistance is a fundamental concept in electrical circuits and materials. It refers to the opposition that a material offers to the flow of electric current. This opposition is caused by collisions between electrons and atoms or molecules within the material, which generates heat and reduces the overall flow of current. Resistance is measured in ohms (symbol: Ω).

Ohm's Law is a fundamental principle in electrical engineering that relates the current (I), voltage (V), and resistance (R) in an electrical circuit. It's expressed by the equation:


=

×

V=I×R

Where:


V represents the voltage across the component (in volts),

I is the current flowing through the component (in amperes or amps), and

R is the resistance of the component (in ohms).

This equation demonstrates that the voltage across a component is directly proportional to the current flowing through it and the resistance it possesses. In other words, if you increase the voltage while keeping the resistance constant, the current will increase proportionally. Similarly, if you increase the resistance while keeping the voltage constant, the current will decrease proportionally.

The resistance of a material or component depends on various factors, including its physical dimensions, temperature, and the type of material. Another related concept is resistivity (

ρ), which is a property of a material that quantifies its intrinsic resistance to current flow. Resistivity is used in situations where you're dealing with materials of different shapes and sizes. The relationship between resistance (

R), resistivity (

ρ), length (

L), and cross-sectional area (

A) is given by:


=

×


R=
A
ρ×L
    ​


Where:


R is the resistance of the material/component,

ρ is the resistivity of the material,

L is the length of the material/component, and

A is the cross-sectional area of the material/component.

Materials with high resistivity (such as insulators) inhibit the flow of electric current more effectively than materials with low resistivity (such as conductors). This relationship is used in various applications, including designing efficient electrical circuits, selecting appropriate materials for specific purposes, and understanding how electricity interacts with different substances.

In summary, resistance is a property that quantifies how much a material opposes the flow of electric current, and Ohm's Law describes the relationship between voltage, current, and resistance in an electrical circuit. Resistivity is a property that helps describe how resistant a material is to current flow and is used in conjunction with other factors to calculate resistance in various situations.
0 like 0 dislike

Related questions

Resistance and Ohms law - Variation of Resistivity with Temperature
Answer : Resistance and Ohm's Law: Resistance is a property of an electrical component that describes how much it opposes the flow of electric current. It's measured in ohms (Ω). ... in various applications, especially in designing circuits and devices that operate under different temperature conditions....

Show More

Resistance and Ohms law - Variation of Resistance with Temperature
Answer : Resistance is a fundamental property of an electrical component that measures its opposition to the flow of electric current. It's denoted by the symbol "R" and is measured in ohms ( ... change, and it's an important consideration in designing and using electronic components in various applications....

Show More

Resistance and Ohms law - Source Transformation
Answer : Resistance, Ohm's Law, and Source Transformation are fundamental concepts in electrical engineering. Let's break down each of these concepts: Resistance: Resistance (R) is a measure of how ... . These concepts are essential for anyone working in the field of electrical engineering or electronics....

Show More

Resistance and Ohms law - Series Combination of Resistors
Answer : Certainly, I'd be happy to explain resistance, Ohm's law, and the series combination of resistors. Resistance: Resistance is a property of a material that opposes the flow of electric ... . Series combinations are used in various applications, such as voltage dividers and current limiting circuits....

Show More

Resistance and Ohms law - Power
Answer : Resistance, Ohm's Law, and Power are fundamental concepts in the field of electrical engineering and physics. Let's explore each of these concepts in detail: 1. Resistance: Resistance ... . They are fundamental for designing, troubleshooting, and working with various electrical devices and systems....

Show More

Resistance and Ohms law - Parallel Combination of Resistors
Answer : When resistors are connected in parallel, their equivalent resistance (total resistance) is calculated differently compared to when they are connected in series. In a parallel combination of resistors ... the current flowing through them based on the voltage across them and their resistance....

Show More

Resistance and Ohms law - Open-Circuit and Short-Circuit
Answer : Resistance is a fundamental property of an electrical component or circuit that opposes the flow of electric current. It's measured in ohms (Ω) and determines how much current will flow through ... flow, while a short circuit has extremely low resistance and can result in dangerously high currents....

Show More

Resistance and Ohms law - Energy Sources
Answer : Resistance is a fundamental concept in physics and electronics, particularly when it comes to understanding the behavior of electric currents in circuits. Ohm's Law is a key principle that ... along the way. Understanding these concepts is essential for designing and analyzing electronic circuits....

Show More

Resistance and Ohms law - Division of Current in Parallel Resistors
Answer : In electronics, when you have multiple resistors connected in parallel, the total current entering the parallel combination splits among the individual resistors. This is governed by Ohm's Law, ... you can use these values to analyze and design parallel resistor circuits in various applications....

Show More

Resistance and Ohms law - Direct Sources
Answer : It seems like you're looking for information about resistance and Ohm's law with direct sources. Here's a breakdown of resistance and Ohm's law, along with references to reliable ... electronics and electrical engineering, and you can explore further based on your specific interests and needs....

Show More

Resistance and Ohms law - Conductors, Insulators, Semiconductors, and Superconductors
Answer : Resistance, Ohm's Law, Conductors, Insulators, Semiconductors, and Superconductors are all fundamental concepts in the field of electrical engineering and physics. Let's break down ... and analyzing electrical circuits, developing electronic devices, and advancing technologies in various fields....

Show More

Resistance and Ohms law - Conductance and Conductivity
Answer : Resistance, Ohm's Law, Conductance, and Conductivity are fundamental concepts in the field of electrical engineering and physics. Let's explore each of these concepts: Resistance: ... resistance in an electrical circuit, providing a fundamental relationship for analyzing and designing circuits....

Show More

Resistance and Ohms law - Alternating Sources
Answer : Resistance and Ohm's Law still apply to circuits with alternating current (AC) sources, but there are some important differences to consider compared to direct current (DC) circuits. Ohm's Law: ... properties and their ability to store and release energy in the form of magnetic and electric fields....

Show More

Impedance vs resistance
Answer : Impedance and resistance are two related but distinct concepts used in the study of electrical circuits. They both represent opposition to the flow of electrical current, but they have different ... while impedance can vary depending on the frequency and phase angle of the AC signal....

Show More

Difference Between Resistance and Impedance
Answer : Resistance and impedance are both electrical concepts that describe the opposition to the flow of electric current in a circuit, but they have some key differences. Let's explore each of them ... considers both resistance and reactance, which may be present due to inductive and capacitive elements....

Show More

What is the difference between resistance and impedance?
Answer : Resistance refers to the opposition encountered by an electrical circuit to the flow of direct current (DC). It is a real component of impedance that remains constant regardless of ... to inductance or capacitance. Impedance varies with frequency and includes both magnitude and phase information....

Show More

Explain the concept of resistivity and its relation to Ohm's Law.
Answer : Resistivity is a fundamental property of materials that quantifies how strongly they oppose the flow of electric current. It is denoted by the symbol "ρ" (rho) and is ... is crucial for designing and analyzing electrical circuits and selecting appropriate materials for specific applications....

Show More

What is Ohm's Law, and how does it relate voltage, current, and resistance?
Answer : Ohm's Law is a fundamental principle in electronics and electrical engineering that describes the relationship between voltage, current, and resistance in an electrical circuit. It's named after ... It's an essential tool for engineers and technicians working with electrical systems and devices....

Show More

How does Ohm's law govern voltage, current, and resistance in a circuit?
Answer : Ohm's law is a fundamental principle in electrical circuits that describes the relationship between voltage, current, and resistance. It was formulated by the German physicist Georg Simon ... electrical circuits, making it easier to design and troubleshoot various electronic devices and systems....

Show More

How do you use Ohm's law to calculate voltage, current, and resistance in a circuit?
Answer : Ohm's Law is a fundamental principle in electrical engineering that relates voltage (V), current (I), and resistance (R) in an electric circuit. It states that the current flowing through a ... might not be directly applicable or might need to be used in conjunction with other laws and principles....

Show More

How do you calculate resistance using Ohm's law?
Answer : Ohm's Law is a fundamental principle in electrical engineering that relates voltage (V), current (I), and resistance (R) in a circuit. It states that the current passing through a conductor between two points is directly ... V / 2 A R = 6 Ω So, the resistance of the circuit is 6 ohms (Ω)....

Show More

What is the relationship between power dissipation and resistance in a circuit according to Ohm's Law?
Answer : According to Ohm's Law, the relationship between power dissipation, resistance, and current in an electrical circuit is described by the formula: = 2 P=I 2 R Where: P ... Law is a fundamental principle in electrical engineering and is widely used to analyze and design electrical circuits....

Show More

What is the relationship between voltage and resistance in a circuit based on Ohm's Law?
Answer : Ohm's Law describes the relationship between voltage (V), current (I), and resistance (R) in an electrical circuit. It states that the voltage across a resistor is directly proportional ... given the voltage and resistance or determine the required resistance for a specific current and voltage....

Show More

What is the relationship between resistance and temperature in a circuit according to Ohm's Law?
Answer : According to Ohm's Law, the relationship between resistance and temperature in a circuit is not directly stated in the law itself. Ohm's Law primarily deals with the relationship ... resistive materials in a circuit, especially when dealing with thermistors or other temperature-sensitive components....

Show More

Explain the relationship between voltage, current, and resistance in a closed circuit according to Ohm's Law.
Answer : Ohm's Law is a fundamental principle in electrical engineering and physics that describes the relationship between voltage (V), current (I), and resistance (R) in a closed electrical circuit. It ... relationship between voltage and current is more complex and doesn't strictly adhere to Ohm's Law....

Show More

How does the temperature coefficient of resistance affect the behavior of a resistor according to Ohm's Law?
Answer : According to Ohm's Law, the relationship between voltage (V), current (I), and resistance (R) in a conductor is given by the equation: V = I * R Where: V ... stable TCRs are preferred in applications where precise resistance values are crucial, especially in temperature-sensitive environments....

Show More

How do you measure resistance in a circuit experimentally using Ohm's Law?
Answer : To measure resistance in a circuit experimentally using Ohm's Law, you will need a known voltage source and an ammeter (to measure current) or a voltmeter (to measure voltage), along with ... due to equipment limitations, so it's essential to consider the precision and accuracy of your instruments....

Show More

Can Ohm's Law be used to determine the resistance of a resistor using color codes?
Answer : Yes, Ohm's Law can be used to determine the resistance of a resistor using color codes. However, it's important to understand that Ohm's Law itself doesn't directly ... bands, the additional bands usually represent additional digits for more precise resistance values or special characteristics....

Show More

How does the length and cross-sectional area of a wire affect its resistance according to Ohm's Law?
Answer : According to Ohm's Law, the resistance of a wire is directly influenced by its length and inversely influenced by its cross-sectional area. Ohm's Law is represented by the formula: R = ... for specific applications to ensure the desired flow of current and minimize energy losses due to resistance....

Show More

How do you find the total resistance in parallel circuits using Ohm's Law?
Answer : Ohm's Law is typically used to find the voltage, current, or resistance in a simple series circuit. However, when dealing with parallel circuits, you can't directly apply Ohm's Law as you would ... units of resistance should be consistent (e.g., all in ohms) to perform the calculation correctly....

Show More

How do you find the total resistance in series circuits using Ohm's Law?
Answer : In a series circuit, resistors are connected end-to-end, creating a single pathway for current to flow. Ohm's Law, which is named after the German physicist Georg Simon Ohm, relates the voltage, current ... = 2A So, in this example, the current flowing through the series circuit would be 2 amperes....

Show More

How does temperature affect resistance in accordance with Ohm's Law?
Answer : According to Ohm's Law, the relationship between voltage (V), current (I), and resistance (R) in an electrical circuit is defined by the equation: V = I * R Where: V = Voltage ( ... of the material may change, and other factors such as thermal expansion and phase transitions can come into play....

Show More

If the resistance in a circuit increases, how does it affect the current as per Ohm's Law?
Answer : According to Ohm's Law, the relationship between voltage (V), current (I), and resistance (R) in an electrical circuit is given by the formula: V = I * R Where: V = ... , and resistance is essential in understanding how different components in an electrical circuit interact and affect each other....

Show More

How do you calculate resistance using Ohm's Law?
Answer : To calculate resistance using Ohm's Law, you'll need to know the values of voltage and current in the circuit. Ohm's Law is expressed as: = V=I R Where: V is the voltage ... of components like diodes and transistors, the relationship may not be linear, and Ohm's Law may not directly apply....

Show More

Define resistance in the context of Ohm's Law.
Answer : In the context of Ohm's Law, resistance is a fundamental electrical property that quantifies the opposition or hindrance to the flow of electric current through a conductor. Ohm's Law ... and resistance, allowing engineers and scientists to understand and predict the behavior of electrical systems....

Show More

Describe Ohm's law and its relationship between voltage, current, and resistance.
Answer : Ohm's Law is a fundamental principle in electrical engineering and physics, named after the German physicist Georg Simon Ohm, who first formulated it in the 1820s. It describes the ... resistors, Ohm's Law serves as a foundational principle for understanding and analyzing electrical circuits....

Show More

Define Ohm's law. How is it used to calculate resistance?
Answer : Ohm's Law is a fundamental principle in electrical engineering and physics that relates the voltage (V), current (I), and resistance (R) in an electrical circuit. It states that the ... simple and complex circuits, making Ohm's Law an essential tool for electrical engineers and hobbyists alike....

Show More

Define resistance in terms of Ohm's Law.
Answer : Resistance is a fundamental electrical property that relates the voltage across a conductor to the current flowing through it. It is defined in terms of Ohm's Law, which states that the voltage ... the flow of current more than materials with lower resistance for the same amount of voltage applied....

Show More

Electrical Engineering Materials - Specific resistance or resistivity
Answer : Specific resistance, also known as resistivity, is a fundamental property of a material that quantifies its ability to resist the flow of electric current. It is denoted by the Greek letter "ρ" ... current. It's a key parameter used to design and analyze various electrical components and systems....

Show More

Basic Electricity - Specific Resistance or Resistivity
Answer : Sure, I'd be happy to help you understand specific resistance (also known as resistivity) in the context of electricity. Resistance is a property of a material that opposes the ... conducts electricity. It's a crucial parameter in understanding and designing electrical circuits and systems....

Show More

How is the resistance of a conductor calculated using its resistivity, length, and cross-sectional area?
Answer : The resistance of a conductor can be calculated using its resistivity ( ρ), length ( L), and cross-sectional area ( A) using Ohm's law and the formula for resistance: = ⋅ ... of resistivity, length, and cross-sectional area into the formula, you can calculate the resistance of the conductor....

Show More

Basic Electricity - Ohm's Law
Answer : Ohm's Law is a fundamental principle in electricity that describes the relationship between voltage, current, and resistance in an electrical circuit. It's named after the German ... concept in electrical engineering and is used extensively in designing and analyzing electrical circuits....

Show More

Explain Ohm's Law and its connection to voltage.
Answer : Ohm's Law is a fundamental principle in the field of electrical engineering and physics that describes the relationship between voltage, current, and resistance in an electrical circuit. ... designing circuits, calculating component values, and ensuring the proper operation of electrical devices....

Show More

What is Ohm's Law?
Answer : Ohm's Law is a fundamental principle in the field of electrical engineering and physics that describes the relationship between voltage, current, and resistance in an electrical circuit. It ... understand how voltage, current, and resistance are related in various electrical components and systems....

Show More

Explain Ohm's Law and its relation to conductors.
Answer : Ohm's Law is a fundamental principle in the field of electrical engineering and physics that describes the relationship between voltage, current, and resistance in an electrical circuit. It is ... are interconnected and helps guide the design and analysis of various electrical devices and systems....

Show More

What is the significance of "Ohm's Law" in conductor behavior?
Answer : "Ohm's Law" is a fundamental principle in the study of electrical circuits and conductor behavior. It defines the relationship between voltage, current, and resistance in a conductor. Named ... engineers and researchers to design, analyze, and troubleshoot a wide range of electronic systems....

Show More

What is Ohm's law?
Answer : Ohm's Law is a fundamental principle in electrical engineering and physics that describes the relationship between voltage, current, and resistance in an electrical circuit. It is named after ... serves as a crucial tool for engineers and technicians working with electrical and electronic devices....

Show More

Explain Ohm's Law and its mathematical equation.
Answer : Ohm's Law is a fundamental principle in physics and electrical engineering that describes the relationship between voltage, current, and resistance in an electrical circuit. It was ... components like resistors, where the relationship between voltage, current, and resistance is straightforward....

Show More

Explain Ohm's Law.
Answer : Ohm's Law is a fundamental principle in electrical engineering and physics that describes the relationship between voltage, current, and resistance in an electrical circuit. It's named after the German ... , Ohm's Law may not hold true, and more advanced circuit analysis techniques are needed....

Show More

What is Ohm's Law, and how is it applied in electrical circuits?
Answer : Ohm's Law is a fundamental principle in electrical engineering and physics that describes the relationship between voltage, current, and resistance in an electrical circuit. It is named after ... behavior of a circuit. This knowledge is fundamental in creating safe and efficient electrical systems....

Show More
...