🔍
A.C. Fundamentals - Phasor Diagram at Series Resonance

1 Answer

At series resonance, a circuit containing a resistor (R), inductor (L), and capacitor (C) is excited by an AC voltage source at a frequency that causes the reactance of the inductor and capacitor to cancel each other out. This results in a purely resistive impedance and maximum current flow through the circuit. In a series resonance circuit, the phasor diagram helps visualize the relationships between the various voltages and currents.

Here's how the phasor diagram looks at series resonance:

Voltage Across the Resistor (VR):
The voltage across the resistor (VR) is in phase with the current (I). This is because the resistor's impedance is purely resistive, and there is no phase shift between voltage and current.

Voltage Across the Inductor (VL):
The voltage across the inductor (VL) leads the current (I) by 90 degrees. This is because the inductor's impedance is purely reactive, and the current lags behind the voltage by 90 degrees.

Voltage Across the Capacitor (VC):
The voltage across the capacitor (VC) lags the current (I) by 90 degrees. This is also because the capacitor's impedance is purely reactive, and the voltage lags behind the current by 90 degrees.

In a phasor diagram for series resonance:

The total voltage (VT) of the AC source is the vector sum of the voltages across the resistor (VR), inductor (VL), and capacitor (VC).
The total current (I) is the same throughout the circuit and is in phase with the voltage across the resistor.

At resonance, the magnitudes of the inductive and capacitive reactances are equal, and their effects cancel out. This means that the voltage across the inductor and capacitor are equal in magnitude and opposite in phase, resulting in their cancellation.

The phasor diagram at series resonance helps illustrate these relationships visually. It's important to note that the exact positions and angles of the phasors in the diagram depend on the specific values of resistance, inductance, and capacitance in the circuit, as well as the frequency of the AC source.

Remember that a series resonance circuit is characterized by a minimum impedance and maximum current at the resonant frequency, making it an important concept in AC circuit analysis and design.
0 like 0 dislike

Related questions

A.C. Fundamentals - Phasor Diagram of Sine Waves of Same Frequency
Answer : In alternating current (AC) circuits, phasor diagrams are used to represent the relationship between different sinusoidal waveforms that have the same frequency. Phasor diagrams provide a visual ... you understand the relationships between voltages and currents in different parts of the circuit....

Show More

A.C. Fundamentals - By Phasor Diagram
Answer : A.C. fundamentals are an essential aspect of electrical engineering that deal with alternating current (AC) circuits. Phasor diagrams are graphical representations used to visualize AC ... simplify calculations and enable engineers to make informed decisions in circuit design and analysis....

Show More

A.C. Fundamentals - Series Resonance
Answer : Certainly, I can help you understand series resonance in A.C. (alternating current) circuits! Series resonance is a phenomenon that occurs in circuits that consist of a resistor (R), ... -world scenarios, components have tolerances and parasitic effects that can affect the behavior of the circuit....

Show More

A.C. Fundamentals - Properties of Resonance of Series R-L-C Circuit
Answer : A series R-L-C circuit is an electrical circuit that consists of a resistor (R), an inductor (L), and a capacitor (C) connected in series. When AC voltage is applied to this circuit, it exhibits certain ... a series R-L-C circuit, the resonant frequency is given by the formula: fₒ = 1 / (2π√(...

Show More

A.C. Fundamentals - Phasor Representation of Sinusoidal Quantities
Answer : Phasor representation is a powerful tool used in the analysis of sinusoidal quantities in electrical engineering, especially in the context of AC (alternating current) fundamentals. It simplifies the ... . It's a powerful tool when analyzing AC circuits with constant frequency sinusoidal inputs....

Show More

A.C. Fundamentals - Phasor Diagrams Using R.M.S. Values
Answer : Phasor diagrams are graphical representations used to analyze and visualize the relationships between voltage and current in AC circuits. They help us understand the phase difference and magnitudes ... of AC circuits, making it easier to perform calculations and analyze circuit behavior....

Show More

A.C. Fundamentals - Introduction of Phasor Representation
Answer : Phasor representation is a powerful mathematical tool used in the analysis of alternating current (AC) circuits. It simplifies the analysis of sinusoidal waveforms and helps us understand the ... in electrical engineering and is crucial for understanding the behavior of AC systems and devices....

Show More

A.C. Fundamentals - Introduction of phasor algebra
Answer : AC (alternating current) fundamentals involve the study of electrical circuits and phenomena that involve time-varying voltages and currents. One of the key tools in analyzing AC circuits is ... , making it an essential tool for electrical engineers and students studying AC circuit fundamentals....

Show More

A.C. Fundamentals - By Phasor Algebra
Answer : "AC Fundamentals - By Phasor Algebra" refers to a topic in electrical engineering that deals with the analysis of alternating current (AC) circuits using phasor algebra. Phasor algebra is a ... working with AC circuits, allowing them to predict and control the behavior of AC systems efficiently....

Show More

A.C. Fundamentals - Applications of Phasor Algebra to A.C. Circuits
Answer : Phasor algebra is a powerful tool used to analyze and solve alternating current (A.C.) circuits. It simplifies the complex mathematics associated with sinusoidal waveforms and helps in ... circuit problems efficiently and gain insights into the behavior of these circuits at different frequencies....

Show More

A.C. Fundamentals - Frequency at Which VL is Maximum
Answer : In the context of AC (alternating current) circuits, the term "VL" is typically used to represent the voltage across an inductor. In an AC circuit, the voltage across an inductor or a ... an inductor (VL) is maximum occurs at higher frequencies, where the inductive reactance is the highest....

Show More

A.C. Fundamentals - Frequency at Which Vc is Maximum
Answer : In the context of A.C. (alternating current) fundamentals, "Vc" typically refers to the voltage across a capacitor in an AC circuit. The behavior of a capacitor in an AC circuit varies with the frequency of the AC ... impedance for the capacitor based on the formula Zc = 1 / (2 * π * f * C)....

Show More

A.C. Fundamentals - Sharpness of Resonance
Answer : In the context of A.C. (alternating current) fundamentals, "sharpness of resonance" refers to the degree to which a resonant circuit or system can amplify a specific frequency of ... . The sharpness of resonance allows for precise frequency selection and filtering in various electronic systems....

Show More

A.C. Fundamentals - Resonance in Parallel A.C. Circuits (Parallel Resonance)
Answer : Parallel resonance, also known as anti-resonance, is a phenomenon that occurs in parallel AC circuits when the impedance of the circuit is minimized and the current flowing through the ... of electronics and electrical engineering, as it provides insights into circuit behavior and performance....

Show More

A.C. Fundamentals - Resonance in A.C. Circuits
Answer : Resonance in AC circuits is a phenomenon that occurs when the inductive reactance (XL) and capacitive reactance (XC) in a circuit become equal, resulting in a condition where the ... and capacitors. It allows engineers to optimize circuit performance for specific frequency ranges and applications....

Show More

A.C. Fundamentals - Resonance Curve
Answer : Sure, I'd be happy to explain A.C. fundamentals and the resonance curve. A.C. Fundamentals: Alternating Current (A.C.) is an electric current that reverses direction ... response amplitude in circuits with reactive components, showing the phenomenon of resonance at the resonant frequency....

Show More

A.C. Fundamentals - Resonance between Parallel R-L and R-C Circuit
Answer : Resonance is an important concept in AC (alternating current) circuits, particularly when dealing with parallel R-L (resistor-inductor) and R-C (resistor-capacitor) circuits. Resonance occurs when the ... real impedance. This leads to a peak in current and/or voltage at the resonant frequency....

Show More

A.C. Fundamentals - Properties of Parallel Resonance
Answer : Parallel resonance is a phenomenon that occurs in electrical circuits when the impedance of the circuit is at its minimum value, resulting in a significant increase in the current ... resonance is crucial for designing and analyzing circuits in various electrical and electronic applications....

Show More

A.C. Fundamentals - Parallel Resonance
Answer : Parallel resonance, also known as anti-resonance, is a phenomenon that occurs in AC (alternating current) circuits containing inductors and capacitors. It is one of the three types ... at resonance. Designing circuits with appropriate damping or loading elements can help mitigate these challenges....

Show More

A.C. Fundamentals - Key Points About Parallel Resonance
Answer : Parallel resonance, also known as anti-resonance, is a phenomenon that occurs in electrical circuits containing inductors, capacitors, and resistors. Here are the key points about parallel ... magnification and excessive current at the resonant frequency if not properly controlled or designed....

Show More

A.C. Fundamentals - General Case for Parallel Resonance
Answer : In the field of electrical engineering, parallel resonance is a phenomenon that occurs in electrical circuits when the reactance of the inductor (XL) and the reactance of the capacitor (XC) cancel ... power systems, such as in the design of filters, tuning circuits, and impedance matching networks....

Show More

A.C. Fundamentals - Series-to-Parallel Conversion and Vice-Versa
Answer : Converting electrical circuits from series to parallel or vice-versa is a common task in electrical engineering. Series and parallel circuits have distinct properties, and the conversion ... and circuit configurations to ensure they meet the desired electrical specifications and requirements....

Show More

A.C. Fundamentals - Series-Parallel A.C. Circuits
Answer : A.C. (alternating current) fundamentals play a crucial role in understanding electrical circuits, both in series and parallel configurations. Let's delve into series-parallel A.C. ... relationships between currents, voltages, impedances, and phasors to effectively analyze and design circuits....

Show More

A.C. Fundamentals - Series R-L-C Circuit
Answer : A.C. fundamentals refer to the principles and concepts related to alternating current (A.C.) circuits. A series R-L-C circuit is a type of A.C. circuit that consists of a resistor ( ... , where A.C. circuits are commonly used in applications like filters, tuning circuits, and impedance matching....

Show More

A.C. Fundamentals - Series R-C Circuit
Answer : A series R-C circuit is an electrical circuit that consists of a resistor (R) and a capacitor (C) connected in series to a voltage source (generally an AC voltage source). ... , makes this circuit configuration valuable for applications like filtering high-frequency noise and generating time delays....

Show More

A.C. Fundamentals - R-L Series A.C. Circuit
Answer : An R-L Series AC circuit is a type of electrical circuit that consists of a resistor (R) and an inductor (L) connected in series to an alternating current (AC) ... These properties have practical applications in various fields, including electronics, power distribution, and signal processing....

Show More

A.C. Fundamentals - Q-Factor of Series Resonant Circuit
Answer : In the context of A.C. (alternating current) circuits, the Q-factor, also known as quality factor, is a measure of how selective a resonant circuit is in responding to a specific ... fundamental concept in the study of A.C. fundamentals and is used extensively in various electronic applications....

Show More

A.C. Fundamentals - Pulse Response of series R-C Circiut
Answer : The pulse response of a series R-C circuit refers to the behavior of the circuit when subjected to a sudden change or pulse in voltage. Let's break down the components and their effects: Series ... over time. The time constant of the circuit determines the rate of change in the circuit's response....

Show More

A.C. Fundamentals - Power in R-L series circuit
Answer : In an electrical circuit, power refers to the rate at which energy is consumed or produced. In an AC (alternating current) circuit containing both resistance (R) and inductance ( ... for analyzing the power characteristics and efficiency of AC circuits containing resistive and inductive components....

Show More

A.C. Fundamentals - Power in a General Series Circuit
Answer : In AC (alternating current) circuits, power in a general series circuit can be calculated using a combination of the concepts of voltage, current, and impedance. The power in an AC circuit can ... cases, you may need to use phasor diagrams or complex numbers to represent the voltages and currents....

Show More

A.C. Fundamentals - Power curve in R-L series circuit
Answer : In an AC (alternating current) circuit, the relationship between voltage, current, and power can be complex due to the presence of reactive components like inductors (L) and capacitors (C). In ... This phase shift causes a non-sinusoidal behavior of the power curve, where power fluctuates over time....

Show More

A.C. Fundamentals - Phase angle in Series A.C. Circuits
Answer : In AC (alternating current) circuits, voltage and current can vary sinusoidally over time. When components like resistors, capacitors, and inductors are connected in series in an AC circuit, ... AC circuits is crucial for analyzing and designing circuits involving AC voltage and current sources....

Show More

A.C. Fundamentals - Introduction of Series A.C. Circuits
Answer : An alternating current (AC) circuit is a type of electrical circuit in which the current periodically changes direction. Unlike direct current (DC) circuits, where the current flows ... systems, impedance matching, and the behavior of electronic devices operating with alternating current....

Show More

A.C. Fundamentals - impulse response of series R-L Ciruit
Answer : In the context of electrical circuits, an impulse response refers to the behavior of the circuit when an ideal impulse (infinitesimally short-duration pulse) is applied as an input. When dealing with the impulse response of a ... ( ) u(t) is the unit step function, which is 0 for < 0 t...

Show More

A.C. Fundamentals - impulse response of series R-C Ciruit
Answer : In the context of electrical circuits, an impulse response refers to the output response of a circuit to an ideal impulse input (Dirac delta function). For a series R-C (resistor-capacitor) ... It's characterized by an exponential decay behavior determined by the time constant RC of the circuit....

Show More

A.C. Fundamentals - Important Relations in R-L-C Series Circuit
Answer : In an R-L-C series circuit (resistor-inductor-capacitor series circuit), the components are connected in sequence with each other, meaning the current flows through them one after the ... , optimize their performance, and troubleshoot issues related to impedance, phase relationships, and resonance....

Show More

A.C. Fundamentals - Impedance in R-L series circuit
Answer : In alternating current (AC) circuits, impedance is a concept similar to resistance in direct current (DC) circuits. Impedance takes into account both the resistance (R) and the reactance (X) of the ... . It depends on the frequency of the AC signal and can be calculated using the formula provided....

Show More

A.C. Fundamentals - Expression of Half Power Frequencies in R-L-C Series Resonating Circuit
Answer : In a series resonant circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), the half-power frequencies are the frequencies at which the power dissipated in ... f₂ - f₁ Understanding these expressions helps in designing and analyzing resonant circuits for various applications....

Show More

A.C. Fundamentals - Comparison of series and parallel resonant circuit
Answer : Series and parallel resonant circuits are two common types of circuits used in electronics and electrical engineering for various applications. They both involve the concept of resonance, which ... between series and parallel resonant circuits depends on the specific requirements of the application....

Show More

A.C. Fundamentals - Bandwidth of a Series Resonant Circuit
Answer : In the context of A.C. (alternating current) fundamentals, a series resonant circuit is an electrical circuit that consists of a resistor (R), an inductor (L), and a capacitor (C) ... to the width of frequencies over which the circuit exhibits a significant response around its resonant frequency....

Show More

A.C. Fundamentals - Applications of Series Resonant Circuits
Answer : Series resonant circuits have several important applications in various fields of electronics and engineering. These applications leverage the unique properties of resonance to achieve specific ... them invaluable for signal processing, filtering, frequency generation, and accurate measurements....

Show More

A.C. Fundamentals - Applications of Series Resonant Circuits
Answer : Series resonant circuits are a type of electrical circuit that exhibit resonance at a specific frequency. Resonance occurs when the reactive components (inductance and capacitance) of the circuit ... design and parameters of the circuit are tailored to suit the requirements of each application....

Show More

A.C. Fundamentals - Admittance (Y) in R-L series circuit
Answer : In an A.C. (alternating current) electrical circuit, admittance (Y) is a measure of how easily current flows through the circuit. It is the reciprocal of impedance (Z) and is analogous to ... the frequency of the AC signal and the values of resistance, inductance, and capacitance in the circuit....

Show More

Synchronous Motors - Equivalent Circuit Model and Its Phasor Diagram
Answer : A synchronous motor is an AC motor that operates at a constant speed, synchronized with the frequency of the AC power supply. It's often used in applications where a fixed speed of ... supply voltage, back EMF, and load characteristics to maintain synchronous operation and efficient power transfer....

Show More

Single Phase Induction Motors - Circuit Model and Phasor Diagram
Answer : A single-phase induction motor is a type of electric motor that operates using a single-phase AC power supply. It is commonly used in small appliances, fans, pumps, and other light ... helps illustrate the phase relationships between the various voltages and currents in the motor's operation....

Show More

What is a phasor diagram in three-phase circuits?
Answer : A phasor diagram is a graphical representation used to analyze and visualize the behavior of three-phase circuits. Three-phase circuits are common in electrical power systems and industrial applications ... , making it easier to analyze and solve problems in power systems and electrical engineering....

Show More

How do you construct a phasor diagram for an AC circuit?
Answer : Constructing a phasor diagram for an AC circuit is a graphical representation that helps to visualize the relationships between voltage and current in the circuit. Phasor diagrams are ... help in understanding circuit characteristics, such as impedance, phase relationships, and power factor....

Show More

What is a phasor diagram?
Answer : A phasor diagram is a graphical representation used in electrical engineering and physics to analyze the behavior of sinusoidal waveforms, such as AC (alternating current) voltages or currents. It ... widely used in electrical engineering, especially in the analysis of AC circuits and power systems....

Show More

A.C. Fundamentals - Z-parameters
Answer : In electrical engineering, A.C. (alternating current) fundamentals are an essential aspect of understanding how electrical circuits behave when exposed to varying voltages and currents. One way ... of components and networks becomes crucial due to the frequency-dependent behavior of these systems....

Show More

A.C. Fundamentals - Y-Parameter
Answer : Y-parameters, also known as admittance parameters or hybrid parameters, are a set of parameters used to describe the behavior of a linear two-port network. Y-parameters are particularly useful ... specific use and interpretation might vary based on the context and type of circuit being analyzed....

Show More
...