🔍
A.C. Fundamentals - Admittance (Y) in R-L series circuit

1 Answer

In an A.C. (alternating current) electrical circuit, admittance (Y) is a measure of how easily current flows through the circuit. It is the reciprocal of impedance (Z) and is analogous to conductance in a direct current (DC) circuit.

For an R-L series circuit, which consists of a resistor (R) and an inductor (L) connected in series, the admittance (Y) can be calculated as follows:


=
1

=
1

2
+
(





)
2
Y=
Z
1
    ​

=
R
2
+(X
L
    ​

−X
C
    ​

)
2
    ​

1
    ​


Where:


Y is the admittance of the circuit (in Siemens, S).

Z is the impedance of the circuit (in Ohms, Ω).

R is the resistance of the resistor (in Ohms, Ω).


X
L
    ​

 is the inductive reactance (in Ohms, Ω) given by


=
2



X
L
    ​

=2πfL, where

f is the frequency of the AC signal and

L is the inductance of the inductor (in Henrys, H).


X
C
    ​

 is the capacitive reactance (in Ohms, Ω) given by


=
1
2



X
C
    ​

=
2πfC
1
    ​

, where

f is the frequency of the AC signal and

C is the capacitance of the capacitor (in Farads, F).

Admittance is a complex quantity and consists of both magnitude and phase angle components. The phase angle indicates the phase relationship between current and voltage in the circuit. The magnitude of admittance is inversely proportional to the impedance, so a lower impedance corresponds to a higher admittance and vice versa.

It's important to note that in an R-L series circuit, the presence of both resistance and inductance will affect the overall impedance and admittance of the circuit, leading to a phase shift between the current and voltage. The admittance will also depend on the frequency of the AC signal and the values of resistance, inductance, and capacitance in the circuit.
0 like 0 dislike

Related questions

A.C. Fundamentals - Series R-L-C Circuit
Answer : A.C. fundamentals refer to the principles and concepts related to alternating current (A.C.) circuits. A series R-L-C circuit is a type of A.C. circuit that consists of a resistor ( ... , where A.C. circuits are commonly used in applications like filters, tuning circuits, and impedance matching....

Show More

A.C. Fundamentals - R-L Series A.C. Circuit
Answer : An R-L Series AC circuit is a type of electrical circuit that consists of a resistor (R) and an inductor (L) connected in series to an alternating current (AC) ... These properties have practical applications in various fields, including electronics, power distribution, and signal processing....

Show More

A.C. Fundamentals - Properties of Resonance of Series R-L-C Circuit
Answer : A series R-L-C circuit is an electrical circuit that consists of a resistor (R), an inductor (L), and a capacitor (C) connected in series. When AC voltage is applied to this circuit, it exhibits certain ... a series R-L-C circuit, the resonant frequency is given by the formula: fₒ = 1 / (2π√(...

Show More

A.C. Fundamentals - Power in R-L series circuit
Answer : In an electrical circuit, power refers to the rate at which energy is consumed or produced. In an AC (alternating current) circuit containing both resistance (R) and inductance ( ... for analyzing the power characteristics and efficiency of AC circuits containing resistive and inductive components....

Show More

A.C. Fundamentals - Power curve in R-L series circuit
Answer : In an AC (alternating current) circuit, the relationship between voltage, current, and power can be complex due to the presence of reactive components like inductors (L) and capacitors (C). In ... This phase shift causes a non-sinusoidal behavior of the power curve, where power fluctuates over time....

Show More

A.C. Fundamentals - Important Relations in R-L-C Series Circuit
Answer : In an R-L-C series circuit (resistor-inductor-capacitor series circuit), the components are connected in sequence with each other, meaning the current flows through them one after the ... , optimize their performance, and troubleshoot issues related to impedance, phase relationships, and resonance....

Show More

A.C. Fundamentals - Impedance in R-L series circuit
Answer : In alternating current (AC) circuits, impedance is a concept similar to resistance in direct current (DC) circuits. Impedance takes into account both the resistance (R) and the reactance (X) of the ... . It depends on the frequency of the AC signal and can be calculated using the formula provided....

Show More

A.C. Fundamentals - Expression of Half Power Frequencies in R-L-C Series Resonating Circuit
Answer : In a series resonant circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), the half-power frequencies are the frequencies at which the power dissipated in ... f₂ - f₁ Understanding these expressions helps in designing and analyzing resonant circuits for various applications....

Show More

A.C. Fundamentals - impulse response of series R-L Ciruit
Answer : In the context of electrical circuits, an impulse response refers to the behavior of the circuit when an ideal impulse (infinitesimally short-duration pulse) is applied as an input. When dealing with the impulse response of a ... ( ) u(t) is the unit step function, which is 0 for < 0 t...

Show More

A.C. Fundamentals - Transient Response in R-L-C Circuit
Answer : A.C. Fundamentals - Transient Response in R-L-C Circuit In the realm of AC (alternating current) circuits, the behavior of circuits with resistors (R), inductors (L), and ... understanding. Detailed calculations, Laplace transforms, and differential equations are often used for in-depth analysis....

Show More

A.C. Fundamentals - Step Response of R-L-C Circuit
Answer : The step response of an R-L-C circuit refers to how the circuit's output voltage or current responds when a step input voltage is applied to it. An R-L-C circuit is ... Understanding these parameters and the behavior of the circuit helps in designing and analyzing circuits for various applications....

Show More

A.C. Fundamentals - Step Response of R-L-C Circuit
Answer : The step response of an R-L-C circuit refers to how the circuit behaves when a sudden change, or step, is applied to its input voltage or current. The response is characterized by the ... insights into how the circuit responds to sudden changes and how it eventually settles into a stable state....

Show More

A.C. Fundamentals - Step Response of R-L Circuit
Answer : In electrical engineering, the step response of a circuit is the behavior of the circuit when subjected to a sudden change in input, typically from zero to a constant value (step input). ... in the inductor's windings, or mutual inductance if multiple inductors are present in the circuit....

Show More

A.C. Fundamentals - Resonance between Parallel R-L and R-C Circuit
Answer : Resonance is an important concept in AC (alternating current) circuits, particularly when dealing with parallel R-L (resistor-inductor) and R-C (resistor-capacitor) circuits. Resonance occurs when the ... real impedance. This leads to a peak in current and/or voltage at the resonant frequency....

Show More

A.C. Fundamentals - R-L-C CIRCUIT
Answer : An RLC circuit, also known as a resonant circuit, is an electrical circuit that consists of three main components: a resistor (R), an inductor (L), and a capacitor (C). These ... circuits can be quite intricate and depends on the interplay between the resistive, inductive, and capacitive elements....

Show More

A.C. Fundamentals - R-L Circuit
Answer : An R-L circuit, also known as a resistor-inductor circuit, is an electrical circuit that contains both a resistor (R) and an inductor (L). These components interact to produce specific ... of alternating current (AC) can introduce further complexities due to the changing direction of the current....

Show More

A.C. Fundamentals - Parallel R-L-C Circuit
Answer : A parallel R-L-C circuit is an electrical circuit that contains resistive (R), inductive (L), and capacitive (C) components connected in parallel. In this configuration, the components ... inductance of connecting wires and parasitic elements that might need to be considered for accurate analysis....

Show More

A.C. Fundamentals - Parallel R-L-C Circuit
Answer : A parallel R-L-C circuit is an electrical circuit that consists of resistors (R), inductors (L), and capacitors (C) connected in parallel. In this configuration, the components ... phasor diagrams to understand the relationships between voltage, current, and phase angles across the components....

Show More

A.C. Fundamentals - Parallel R-L Circuit
Answer : A parallel R-L circuit is an electrical circuit that consists of resistive (R) and inductive (L) components connected in parallel. In this type of circuit, the components share the same ... , phase angle, and time constants, which influence the circuit's response to alternating current signals....

Show More

A.C. Fundamentals - Admittance (Y)
Answer : Admittance (Y) is a fundamental concept in the field of electrical engineering and A.C. (alternating current) circuit analysis. It is the reciprocal of impedance (Z) and ... especially when dealing with complex circuits containing multiple elements with varying conductance and susceptance values....

Show More

A.C. Fundamentals - Series R-C Circuit
Answer : A series R-C circuit is an electrical circuit that consists of a resistor (R) and a capacitor (C) connected in series to a voltage source (generally an AC voltage source). ... , makes this circuit configuration valuable for applications like filtering high-frequency noise and generating time delays....

Show More

A.C. Fundamentals - Pulse Response of series R-C Circiut
Answer : The pulse response of a series R-C circuit refers to the behavior of the circuit when subjected to a sudden change or pulse in voltage. Let's break down the components and their effects: Series ... over time. The time constant of the circuit determines the rate of change in the circuit's response....

Show More

A.C. Fundamentals - impulse response of series R-C Ciruit
Answer : In the context of electrical circuits, an impulse response refers to the output response of a circuit to an ideal impulse input (Dirac delta function). For a series R-C (resistor-capacitor) ... It's characterized by an exponential decay behavior determined by the time constant RC of the circuit....

Show More

A.C. Fundamentals - Importance of Admittance in Parallel A.C. Circuit Analysis
Answer : Admittance is a crucial concept in the analysis of parallel AC (alternating current) circuits. In AC circuit analysis, we often deal with complex quantities that involve both magnitude ... circuits. Admittance helps engineers and students work with parallel AC circuits efficiently and effectively....

Show More

A.C. Fundamentals - Admittance Method for Parallel A.C. Circuit Solution
Answer : The Admittance Method is a technique used to analyze parallel AC circuits. Admittance (Y) is the reciprocal of impedance (Z), and it is a complex quantity that includes both magnitude ... circuits by using admittances, which are easier to manipulate in algebraic calculations compared to impedances....

Show More

A.C. Fundamentals - Step Response of R-C Circuit
Answer : The step response of an R-C (resistor-capacitor) circuit refers to the behavior of the circuit when a sudden change, or step, in input voltage is applied. This behavior is especially ... or discharging of the capacitor, and this behavior is characterized by the time constant of the circuit....

Show More

A.C. Fundamentals - R-C Circuit
Answer : An R-C circuit, also known as a resistor-capacitor circuit, is a simple electronic circuit that consists of a resistor (R) and a capacitor (C) connected in series or parallel. This ... the capacitor is charging or discharging and the values of the resistance and capacitance used in the circuit....

Show More

A.C. Fundamentals - Parallel R-C Circuit
Answer : An R-C circuit (resistor-capacitor circuit) is a combination of passive electrical components-an resistor (R) and a capacitor (C)-connected together in a specific configuration. ... electronics and electrical engineering applications, particularly in filters, signal processing, and timing circuits....

Show More

A.C. Fundamentals - Components of admittance
Answer : In the context of electrical circuits and alternating current (AC) fundamentals, admittance is the reciprocal of impedance. It's a complex quantity that encompasses both the conductance and susceptance of ... provides insight into the ease of current flow and the reactive nature of the circuit....

Show More

A.C. Fundamentals - Application of Admittance Method
Answer : The admittance method is a technique used in AC (alternating current) circuit analysis to solve circuits in terms of admittances, which are the reciprocals of impedances. Admittance is a complex ... every circuit, but it provides an alternative perspective that can be helpful in certain scenarios....

Show More

A.C. Fundamentals - Admittance Triangle
Answer : The Admittance Triangle is a graphical representation used in alternating current (AC) circuit analysis to understand the relationships between impedance, admittance, and phase angle. It is ... tool for analyzing AC circuits, especially when dealing with complex impedances and phase differences....

Show More

A.C. Fundamentals - L-section
Answer : An L-section, also known as an L-network or L-type matching network, is a type of passive electrical circuit used for impedance matching in various applications, particularly ... and transmission efficiency in various electronic systems, including antennas, amplifiers, and communication systems....

Show More

A.C. Fundamentals - Variation of XL, Xc, R, and Z with Frequency
Answer : In the context of alternating current (AC) circuits, XL, XC, R, and Z are important parameters that describe the behavior of circuit elements in response to varying frequency. Let' ... , as well as for applications in fields such as electronics, electrical engineering, and telecommunications....

Show More

A.C. Fundamentals - Root Mean Square (R.M.S.) Value of Alternating Current
Answer : In alternating current (AC) circuits, the Root Mean Square (RMS) value is a crucial parameter that helps us understand the equivalent steady DC value of an AC waveform. It's a way to ... AC quantities are consistent with their DC equivalents, making analysis and design of AC systems more manageable....

Show More

A.C. Fundamentals - R.M.S. or Effective Value
Answer : In the field of electrical engineering, A.C. fundamentals refer to the principles and concepts related to alternating current (AC) systems. One important concept in AC systems is the Root ... . It's extensively used in various calculations and analyses in the field of electrical engineering....

Show More

A.C. Fundamentals - Phasor Diagrams Using R.M.S. Values
Answer : Phasor diagrams are graphical representations used to analyze and visualize the relationships between voltage and current in AC circuits. They help us understand the phase difference and magnitudes ... of AC circuits, making it easier to perform calculations and analyze circuit behavior....

Show More

A.C. Fundamentals - Importance of R.M.S. Values
Answer : Root Mean Square (RMS) values are of fundamental importance in the field of electrical engineering, especially in the analysis and design of AC (alternating current) circuits. RMS values ... comparisons in various aspects of electrical engineering, making them an indispensable concept in the field....

Show More

A.C. Fundamentals - R.M.S. Value of a Complex Wave
Answer : In AC (alternating current) fundamentals, the RMS (Root Mean Square) value of a complex waveform is a way to represent the effective or equivalent value of an AC signal. It is ... represent its effective value, and it's an important concept in AC fundamentals and electrical engineering....

Show More

A.C. Fundamentals - Q-Factor of Series Resonant Circuit
Answer : In the context of A.C. (alternating current) circuits, the Q-factor, also known as quality factor, is a measure of how selective a resonant circuit is in responding to a specific ... fundamental concept in the study of A.C. fundamentals and is used extensively in various electronic applications....

Show More

A.C. Fundamentals - Power in a General Series Circuit
Answer : In AC (alternating current) circuits, power in a general series circuit can be calculated using a combination of the concepts of voltage, current, and impedance. The power in an AC circuit can ... cases, you may need to use phasor diagrams or complex numbers to represent the voltages and currents....

Show More

A.C. Fundamentals - Comparison of series and parallel resonant circuit
Answer : Series and parallel resonant circuits are two common types of circuits used in electronics and electrical engineering for various applications. They both involve the concept of resonance, which ... between series and parallel resonant circuits depends on the specific requirements of the application....

Show More

A.C. Fundamentals - Bandwidth of a Series Resonant Circuit
Answer : In the context of A.C. (alternating current) fundamentals, a series resonant circuit is an electrical circuit that consists of a resistor (R), an inductor (L), and a capacitor (C) ... to the width of frequencies over which the circuit exhibits a significant response around its resonant frequency....

Show More

A.C. Fundamentals - Y-Parameter
Answer : Y-parameters, also known as admittance parameters or hybrid parameters, are a set of parameters used to describe the behavior of a linear two-port network. Y-parameters are particularly useful ... specific use and interpretation might vary based on the context and type of circuit being analyzed....

Show More

A.C. Fundamentals - Voltages, Currents, and Power in Y Connection
Answer : In electrical engineering, AC (alternating current) fundamentals play a crucial role in understanding the behavior of AC circuits. One common configuration is the Y connection, also known ... essential for analyzing and designing AC circuits, especially in industrial and power distribution systems....

Show More

A.C. Fundamentals - Series-to-Parallel Conversion and Vice-Versa
Answer : Converting electrical circuits from series to parallel or vice-versa is a common task in electrical engineering. Series and parallel circuits have distinct properties, and the conversion ... and circuit configurations to ensure they meet the desired electrical specifications and requirements....

Show More

A.C. Fundamentals - Series-Parallel A.C. Circuits
Answer : A.C. (alternating current) fundamentals play a crucial role in understanding electrical circuits, both in series and parallel configurations. Let's delve into series-parallel A.C. ... relationships between currents, voltages, impedances, and phasors to effectively analyze and design circuits....

Show More

A.C. Fundamentals - Series Resonance
Answer : Certainly, I can help you understand series resonance in A.C. (alternating current) circuits! Series resonance is a phenomenon that occurs in circuits that consist of a resistor (R), ... -world scenarios, components have tolerances and parasitic effects that can affect the behavior of the circuit....

Show More

A.C. Fundamentals - Phasor Diagram at Series Resonance
Answer : At series resonance, a circuit containing a resistor (R), inductor (L), and capacitor (C) is excited by an AC voltage source at a frequency that causes the reactance of the inductor and ... maximum current at the resonant frequency, making it an important concept in AC circuit analysis and design....

Show More

A.C. Fundamentals - Phase angle in Series A.C. Circuits
Answer : In AC (alternating current) circuits, voltage and current can vary sinusoidally over time. When components like resistors, capacitors, and inductors are connected in series in an AC circuit, ... AC circuits is crucial for analyzing and designing circuits involving AC voltage and current sources....

Show More

A.C. Fundamentals - Introduction of Series A.C. Circuits
Answer : An alternating current (AC) circuit is a type of electrical circuit in which the current periodically changes direction. Unlike direct current (DC) circuits, where the current flows ... systems, impedance matching, and the behavior of electronic devices operating with alternating current....

Show More
...